Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxplim Structured version   Visualization version   GIF version

Theorem cxplim 24498
 Description: A power to a negative exponent goes to zero as the base becomes large. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Mario Carneiro, 18-May-2016.)
Assertion
Ref Expression
cxplim (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxplim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 11715 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
3 rpge0 11721 . . . . . 6 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
43adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
5 rpre 11715 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
65renegcld 10336 . . . . . . 7 (𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
76adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → -𝐴 ∈ ℝ)
8 rpcn 11717 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
9 rpne0 11724 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ≠ 0)
108, 9negne0d 10269 . . . . . . 7 (𝐴 ∈ ℝ+ → -𝐴 ≠ 0)
1110adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → -𝐴 ≠ 0)
127, 11rereccld 10731 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → (1 / -𝐴) ∈ ℝ)
132, 4, 12recxpcld 24269 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → (𝑥𝑐(1 / -𝐴)) ∈ ℝ)
14 simprl 790 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑛 ∈ ℝ+)
155ad2antrr 758 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ∈ ℝ)
1614, 15rpcxpcld 24276 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐𝐴) ∈ ℝ+)
1716rpreccld 11758 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / (𝑛𝑐𝐴)) ∈ ℝ+)
1817rprege0d 11755 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / (𝑛𝑐𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑛𝑐𝐴))))
19 absid 13884 . . . . . . . 8 (((1 / (𝑛𝑐𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑛𝑐𝐴))) → (abs‘(1 / (𝑛𝑐𝐴))) = (1 / (𝑛𝑐𝐴)))
2018, 19syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (abs‘(1 / (𝑛𝑐𝐴))) = (1 / (𝑛𝑐𝐴)))
21 simplr 788 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ∈ ℝ+)
22 simprr 792 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐(1 / -𝐴)) < 𝑛)
23 rpreccl 11733 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
2423ad2antrr 758 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝐴) ∈ ℝ+)
2524rpcnd 11750 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝐴) ∈ ℂ)
2621, 25cxprecd 24275 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) = (1 / (𝑥𝑐(1 / 𝐴))))
27 rpcn 11717 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
2827ad2antlr 759 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ∈ ℂ)
29 rpne0 11724 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3029ad2antlr 759 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ≠ 0)
3128, 30, 25cxpnegd 24261 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐-(1 / 𝐴)) = (1 / (𝑥𝑐(1 / 𝐴))))
32 1cnd 9935 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 1 ∈ ℂ)
338ad2antrr 758 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ∈ ℂ)
349ad2antrr 758 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ≠ 0)
3532, 33, 34divneg2d 10694 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → -(1 / 𝐴) = (1 / -𝐴))
3635oveq2d 6565 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐-(1 / 𝐴)) = (𝑥𝑐(1 / -𝐴)))
3726, 31, 363eqtr2d 2650 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) = (𝑥𝑐(1 / -𝐴)))
3833, 34recidd 10675 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝐴 · (1 / 𝐴)) = 1)
3938oveq2d 6565 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐(𝐴 · (1 / 𝐴))) = (𝑛𝑐1))
4014, 15, 25cxpmuld 24280 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐(𝐴 · (1 / 𝐴))) = ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)))
4114rpcnd 11750 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑛 ∈ ℂ)
4241cxp1d 24252 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐1) = 𝑛)
4339, 40, 423eqtr3d 2652 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)) = 𝑛)
4422, 37, 433brtr4d 4615 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) < ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)))
45 rpreccl 11733 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
4645ad2antlr 759 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) ∈ ℝ+)
4746rpred 11748 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) ∈ ℝ)
4846rpge0d 11752 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 0 ≤ (1 / 𝑥))
4916rpred 11748 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐𝐴) ∈ ℝ)
5016rpge0d 11752 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 0 ≤ (𝑛𝑐𝐴))
5147, 48, 49, 50, 24cxplt2d 24272 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥) < (𝑛𝑐𝐴) ↔ ((1 / 𝑥)↑𝑐(1 / 𝐴)) < ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴))))
5244, 51mpbird 246 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) < (𝑛𝑐𝐴))
5321, 16, 52ltrec1d 11768 . . . . . . 7 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / (𝑛𝑐𝐴)) < 𝑥)
5420, 53eqbrtrd 4605 . . . . . 6 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)
5554expr 641 . . . . 5 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
5655ralrimiva 2949 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
57 breq1 4586 . . . . . . 7 (𝑦 = (𝑥𝑐(1 / -𝐴)) → (𝑦 < 𝑛 ↔ (𝑥𝑐(1 / -𝐴)) < 𝑛))
5857imbi1d 330 . . . . . 6 (𝑦 = (𝑥𝑐(1 / -𝐴)) → ((𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥) ↔ ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)))
5958ralbidv 2969 . . . . 5 (𝑦 = (𝑥𝑐(1 / -𝐴)) → (∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥) ↔ ∀𝑛 ∈ ℝ+ ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)))
6059rspcev 3282 . . . 4 (((𝑥𝑐(1 / -𝐴)) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
6113, 56, 60syl2anc 691 . . 3 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
6261ralrimiva 2949 . 2 (𝐴 ∈ ℝ+ → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
63 id 22 . . . . . . 7 (𝑛 ∈ ℝ+𝑛 ∈ ℝ+)
64 rpcxpcl 24222 . . . . . . 7 ((𝑛 ∈ ℝ+𝐴 ∈ ℝ) → (𝑛𝑐𝐴) ∈ ℝ+)
6563, 5, 64syl2anr 494 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
6665rpreccld 11758 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (1 / (𝑛𝑐𝐴)) ∈ ℝ+)
6766rpcnd 11750 . . . 4 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (1 / (𝑛𝑐𝐴)) ∈ ℂ)
6867ralrimiva 2949 . . 3 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℝ+ (1 / (𝑛𝑐𝐴)) ∈ ℂ)
69 rpssre 11719 . . . 4 + ⊆ ℝ
7069a1i 11 . . 3 (𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ)
7168, 70rlim0lt 14088 . 2 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)))
7262, 71mpbird 246 1 (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953   ≤ cle 9954  -cneg 10146   / cdiv 10563  ℝ+crp 11708  abscabs 13822   ⇝𝑟 crli 14064  ↑𝑐ccxp 24106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108 This theorem is referenced by:  sqrtlim  24499  signsplypnf  29953
 Copyright terms: Public domain W3C validator