Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim0lt Structured version   Visualization version   GIF version

Theorem rlim0lt 14088
 Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim0.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim0.2 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
rlim0lt (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim0lt
StepHypRef Expression
1 rlim0.1 . . 3 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim0.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 0cnd 9912 . . 3 (𝜑 → 0 ∈ ℂ)
41, 2, 3rlim2lt 14076 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥)))
5 subid1 10180 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
65fveq2d 6107 . . . . . . . 8 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
76breq1d 4593 . . . . . . 7 (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
87imbi2d 329 . . . . . 6 (𝐵 ∈ ℂ → ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
98ralimi 2936 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
10 ralbi 3050 . . . . 5 (∀𝑧𝐴 ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
111, 9, 103syl 18 . . . 4 (𝜑 → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
1211rexbidv 3034 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
1312ralbidv 2969 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
144, 13bitrd 267 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815   < clt 9953   − cmin 10145  ℝ+crp 11708  abscabs 13822   ⇝𝑟 crli 14064 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-rlim 14068 This theorem is referenced by:  divrcnv  14423  divlogrlim  24181  cxplim  24498  cxploglim  24504
 Copyright terms: Public domain W3C validator