Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divlogrlim Structured version   Visualization version   GIF version

Theorem divlogrlim 24181
 Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
divlogrlim (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0

Proof of Theorem divlogrlim
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 12076 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
2 eliooord 12104 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
32simpld 474 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 1 < 𝑥)
41, 3rplogcld 24179 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+)
54rprecred 11759 . . . . . . 7 (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℝ)
65recnd 9947 . . . . . 6 (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℂ)
76rgen 2906 . . . . 5 𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ
87a1i 11 . . . 4 (⊤ → ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ)
9 ioossre 12106 . . . . 5 (1(,)+∞) ⊆ ℝ
109a1i 11 . . . 4 (⊤ → (1(,)+∞) ⊆ ℝ)
118, 10rlim0lt 14088 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)))
1211trud 1484 . 2 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))
13 id 22 . . . . 5 (𝑦 ∈ ℝ+𝑦 ∈ ℝ+)
1413rprecred 11759 . . . 4 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ)
1514reefcld 14657 . . 3 (𝑦 ∈ ℝ+ → (exp‘(1 / 𝑦)) ∈ ℝ)
165ad2antlr 759 . . . . . . 7 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ)
171ad2antlr 759 . . . . . . . . . 10 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ)
183ad2antlr 759 . . . . . . . . . 10 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 < 𝑥)
1917, 18rplogcld 24179 . . . . . . . . 9 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+)
2019rpreccld 11758 . . . . . . . 8 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ+)
2120rpge0d 11752 . . . . . . 7 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 0 ≤ (1 / (log‘𝑥)))
2216, 21absidd 14009 . . . . . 6 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) = (1 / (log‘𝑥)))
23 simpll 786 . . . . . . 7 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑦 ∈ ℝ+)
244ad2antlr 759 . . . . . . 7 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+)
25 simpr 476 . . . . . . . . 9 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < 𝑥)
26 1rp 11712 . . . . . . . . . . . 12 1 ∈ ℝ+
2726a1i 11 . . . . . . . . . . 11 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ+)
2827rpred 11748 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ)
2928, 17, 18ltled 10064 . . . . . . . . . . 11 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ≤ 𝑥)
3017, 27, 29rpgecld 11787 . . . . . . . . . 10 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ+)
3130reeflogd 24174 . . . . . . . . 9 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(log‘𝑥)) = 𝑥)
3225, 31breqtrrd 4611 . . . . . . . 8 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))
3323rprecred 11759 . . . . . . . . 9 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) ∈ ℝ)
3424rpred 11748 . . . . . . . . 9 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ)
35 eflt 14686 . . . . . . . . 9 (((1 / 𝑦) ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥))))
3633, 34, 35syl2anc 691 . . . . . . . 8 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥))))
3732, 36mpbird 246 . . . . . . 7 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) < (log‘𝑥))
3823, 24, 37ltrec1d 11768 . . . . . 6 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) < 𝑦)
3922, 38eqbrtrd 4605 . . . . 5 (((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) < 𝑦)
4039ex 449 . . . 4 ((𝑦 ∈ ℝ+𝑥 ∈ (1(,)+∞)) → ((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))
4140ralrimiva 2949 . . 3 (𝑦 ∈ ℝ+ → ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))
42 breq1 4586 . . . . . 6 (𝑐 = (exp‘(1 / 𝑦)) → (𝑐 < 𝑥 ↔ (exp‘(1 / 𝑦)) < 𝑥))
4342imbi1d 330 . . . . 5 (𝑐 = (exp‘(1 / 𝑦)) → ((𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦) ↔ ((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)))
4443ralbidv 2969 . . . 4 (𝑐 = (exp‘(1 / 𝑦)) → (∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦) ↔ ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)))
4544rspcev 3282 . . 3 (((exp‘(1 / 𝑦)) ∈ ℝ ∧ ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))
4615, 41, 45syl2anc 691 . 2 (𝑦 ∈ ℝ+ → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))
4712, 46mprgbir 2911 1 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816  +∞cpnf 9950   < clt 9953   / cdiv 10563  ℝ+crp 11708  (,)cioo 12046  abscabs 13822   ⇝𝑟 crli 14064  expce 14631  logclog 24105 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107 This theorem is referenced by:  logno1  24182  vmalogdivsum2  25027  2vmadivsumlem  25029  selberg4lem1  25049  pntrlog2bndlem2  25067  pntrlog2bndlem4  25069  pntrlog2bndlem5  25070
 Copyright terms: Public domain W3C validator