Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rprecred | Structured version Visualization version GIF version |
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprecred | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpreccld 11758 | . 2 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ+) |
3 | 2 | rpred 11748 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 (class class class)co 6549 ℝcr 9814 1c1 9816 / cdiv 10563 ℝ+crp 11708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-rp 11709 |
This theorem is referenced by: xov1plusxeqvd 12189 ltexp2r 12779 expnlbnd2 12857 rlimno1 14232 lebnumii 22573 sca2rab 23087 aalioulem4 23894 aalioulem5 23895 dvradcnv 23979 tanregt0 24089 divlogrlim 24181 logccv 24209 cxplt3 24246 asinlem3 24398 rlimcxp 24500 cxp2lim 24503 divsqrtsumlem 24506 logdiflbnd 24521 lgamgulmlem2 24556 lgamgulmlem3 24557 basellem3 24609 dchrisum0lema 25003 dchrisum0lem1 25005 dchrisum0lem2a 25006 mulog2sumlem1 25023 vmalogdivsum2 25027 pntrlog2bndlem2 25067 pntlemd 25083 pntlemr 25091 ostth3 25127 nmcexi 28269 knoppndvlem18 31690 knoppndvlem20 31692 irrapxlem4 36407 irrapxlem5 36408 ioodvbdlimc1lem2 38822 ioodvbdlimc2lem 38824 stoweidlem14 38907 fourierdlem39 39039 pimrecltpos 39596 smfrec 39674 |
Copyright terms: Public domain | W3C validator |