MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Structured version   Visualization version   GIF version

Theorem eliooord 12104
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 12103 . . . 4 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
2 elioo2 12087 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
31, 2syl 17 . . 3 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
43ibi 255 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶))
5 3simpc 1053 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
64, 5syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wcel 1977   class class class wbr 4583  (class class class)co 6549  cr 9814  *cxr 9952   < clt 9953  (,)cioo 12046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050
This theorem is referenced by:  elioo4g  12105  iccssioo2  12117  qdensere  22383  zcld  22424  reconnlem2  22438  xrge0tsms  22445  ovolioo  23143  ioorcl2  23146  itgsplitioo  23410  dvferm1lem  23551  dvferm2lem  23553  dvferm  23555  dvlt0  23572  dvivthlem1  23575  lhop1lem  23580  lhop1  23581  lhop2  23582  dvcvx  23587  ftc1lem4  23606  itgsubstlem  23615  itgsubst  23616  pilem2  24010  pilem3  24011  pigt2lt4  24012  tangtx  24061  tanabsge  24062  cosne0  24080  tanord  24088  tanregt0  24089  argimlt0  24163  logneg2  24165  divlogrlim  24181  logno1  24182  logcnlem3  24190  dvloglem  24194  logf1o2  24196  loglesqrt  24299  asinsin  24419  acoscos  24420  atanlogaddlem  24440  atanlogsub  24443  atantan  24450  atanbndlem  24452  scvxcvx  24512  lgamgulmlem2  24556  basellem8  24614  vmalogdivsum2  25027  vmalogdivsum  25028  2vmadivsumlem  25029  chpdifbndlem1  25042  selberg3lem1  25046  selberg3  25048  selberg4lem1  25049  selberg4  25050  selberg3r  25058  selberg4r  25059  selberg34r  25060  pntrlog2bndlem1  25066  pntrlog2bndlem2  25067  pntrlog2bndlem3  25068  pntrlog2bndlem4  25069  pntrlog2bndlem5  25070  pntrlog2bndlem6a  25071  pntrlog2bndlem6  25072  pntrlog2bnd  25073  pntpbnd1a  25074  pntpbnd1  25075  pntpbnd2  25076  pntpbnd  25077  pntibndlem2  25080  pntibndlem3  25081  pntibnd  25082  pntlemd  25083  pntlemb  25086  pntlemr  25091  pnt  25103  padicabv  25119  xrge0tsmsd  29116  knoppndvlem3  31675  iooelexlt  32386  relowlssretop  32387  poimir  32612  itg2gt0cn  32635  ftc1cnnclem  32653  radcnvrat  37535  cncfiooicclem1  38779  itgioocnicc  38869  iblcncfioo  38870  amgmwlem  42357
  Copyright terms: Public domain W3C validator