Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  scvxcvx Structured version   Visualization version   GIF version

Theorem scvxcvx 24512
 Description: A strictly convex function is convex. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
scvxcvx.1 (𝜑𝐷 ⊆ ℝ)
scvxcvx.2 (𝜑𝐹:𝐷⟶ℝ)
scvxcvx.3 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
scvxcvx.4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
Assertion
Ref Expression
scvxcvx ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))
Distinct variable groups:   𝑎,𝑏,𝑡,𝑥,𝑦,𝐷   𝜑,𝑎,𝑏,𝑡,𝑥,𝑦   𝑋,𝑎,𝑏,𝑡,𝑥,𝑦   𝑌,𝑎,𝑏,𝑡,𝑥,𝑦   𝑡,𝐹,𝑥,𝑦   𝑡,𝑇
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑎,𝑏)   𝐹(𝑎,𝑏)

Proof of Theorem scvxcvx
StepHypRef Expression
1 scvxcvx.1 . . . . . . . . 9 (𝜑𝐷 ⊆ ℝ)
21adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝐷 ⊆ ℝ)
3 simpr1 1060 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋𝐷)
42, 3sseldd 3569 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℝ)
54adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → 𝑋 ∈ ℝ)
6 simpr2 1061 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌𝐷)
72, 6sseldd 3569 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℝ)
87adantr 480 . . . . . 6 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → 𝑌 ∈ ℝ)
95, 8lttri4d 10057 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑋 < 𝑌𝑋 = 𝑌𝑌 < 𝑋))
10 simprl 790 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝑇 ∈ (0(,)1))
113adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝑋𝐷)
126adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝑌𝐷)
1311, 12jca 553 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → (𝑋𝐷𝑌𝐷))
14 simprr 792 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝑋 < 𝑌)
15 simpll 786 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝜑)
16 breq1 4586 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 < 𝑦𝑋 < 𝑦))
17 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (𝑡 · 𝑥) = (𝑡 · 𝑋))
1817oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦)))
1918fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))))
20 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2120oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑡 · (𝐹𝑥)) = (𝑡 · (𝐹𝑋)))
2221oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) = ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦))))
2319, 22breq12d 4596 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦)))))
2423ralbidv 2969 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦)))))
2524imbi2d 329 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦)))) ↔ (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦))))))
2616, 25imbi12d 333 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑥 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))) ↔ (𝑋 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦)))))))
27 breq2 4587 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋 < 𝑦𝑋 < 𝑌))
28 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑌 → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · 𝑌))
2928oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑌 → ((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌)))
3029fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑦 = 𝑌 → (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))))
31 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
3231oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑌 → ((1 − 𝑡) · (𝐹𝑦)) = ((1 − 𝑡) · (𝐹𝑌)))
3332oveq2d 6565 . . . . . . . . . . . . . . 15 (𝑦 = 𝑌 → ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦))) = ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌))))
3430, 33breq12d 4596 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → ((𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌)))))
3534ralbidv 2969 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌)))))
3635imbi2d 329 . . . . . . . . . . . 12 (𝑦 = 𝑌 → ((𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦)))) ↔ (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌))))))
3727, 36imbi12d 333 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑋 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑦))))) ↔ (𝑋 < 𝑌 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌)))))))
38 scvxcvx.4 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
39383expia 1259 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑥 < 𝑦)) → (𝑡 ∈ (0(,)1) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦)))))
4039ralrimiv 2948 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑥 < 𝑦)) → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
4140expcom 450 . . . . . . . . . . . 12 ((𝑥𝐷𝑦𝐷𝑥 < 𝑦) → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦)))))
42413expia 1259 . . . . . . . . . . 11 ((𝑥𝐷𝑦𝐷) → (𝑥 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))))
4326, 37, 42vtocl2ga 3247 . . . . . . . . . 10 ((𝑋𝐷𝑌𝐷) → (𝑋 < 𝑌 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌))))))
4413, 14, 15, 43syl3c 64 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌))))
45 oveq1 6556 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝑡 · 𝑋) = (𝑇 · 𝑋))
46 oveq2 6557 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (1 − 𝑡) = (1 − 𝑇))
4746oveq1d 6564 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((1 − 𝑡) · 𝑌) = ((1 − 𝑇) · 𝑌))
4845, 47oveq12d 6567 . . . . . . . . . . . 12 (𝑡 = 𝑇 → ((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
4948fveq2d 6107 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) = (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))))
50 oveq1 6556 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (𝑡 · (𝐹𝑋)) = (𝑇 · (𝐹𝑋)))
5146oveq1d 6564 . . . . . . . . . . . 12 (𝑡 = 𝑇 → ((1 − 𝑡) · (𝐹𝑌)) = ((1 − 𝑇) · (𝐹𝑌)))
5250, 51oveq12d 6567 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))
5349, 52breq12d 4596 . . . . . . . . . 10 (𝑡 = 𝑇 → ((𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌))) ↔ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
5453rspcv 3278 . . . . . . . . 9 (𝑇 ∈ (0(,)1) → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹𝑋)) + ((1 − 𝑡) · (𝐹𝑌))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
5510, 44, 54sylc 63 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))
5655orcd 406 . . . . . . 7 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
5756expr 641 . . . . . 6 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑋 < 𝑌 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))))
58 unitssre 12190 . . . . . . . . . . . . . . . 16 (0[,]1) ⊆ ℝ
59 simpr3 1062 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
6058, 59sseldi 3566 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ)
6160recnd 9947 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
62 ax-1cn 9873 . . . . . . . . . . . . . 14 1 ∈ ℂ
63 pncan3 10168 . . . . . . . . . . . . . 14 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑇 + (1 − 𝑇)) = 1)
6461, 62, 63sylancl 693 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1)
6564oveq1d 6564 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = (1 · 𝑌))
66 subcl 10159 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
6762, 61, 66sylancr 694 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℂ)
687recnd 9947 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℂ)
6961, 67, 68adddird 9944 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))
7068mulid2d 9937 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 · 𝑌) = 𝑌)
7165, 69, 703eqtr3d 2652 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)) = 𝑌)
7271fveq2d 6107 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) = (𝐹𝑌))
7364oveq1d 6564 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · (𝐹𝑌)) = (1 · (𝐹𝑌)))
74 scvxcvx.2 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐷⟶ℝ)
7574adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝐹:𝐷⟶ℝ)
7675, 6ffvelrnd 6268 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹𝑌) ∈ ℝ)
7776recnd 9947 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹𝑌) ∈ ℂ)
7861, 67, 77adddird 9944 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · (𝐹𝑌)) = ((𝑇 · (𝐹𝑌)) + ((1 − 𝑇) · (𝐹𝑌))))
7977mulid2d 9937 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 · (𝐹𝑌)) = (𝐹𝑌))
8073, 78, 793eqtr3d 2652 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · (𝐹𝑌)) + ((1 − 𝑇) · (𝐹𝑌))) = (𝐹𝑌))
8172, 80eqtr4d 2647 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑌)) + ((1 − 𝑇) · (𝐹𝑌))))
8281adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑌)) + ((1 − 𝑇) · (𝐹𝑌))))
83 oveq2 6557 . . . . . . . . . . 11 (𝑋 = 𝑌 → (𝑇 · 𝑋) = (𝑇 · 𝑌))
8483oveq1d 6564 . . . . . . . . . 10 (𝑋 = 𝑌 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))
8584fveq2d 6107 . . . . . . . . 9 (𝑋 = 𝑌 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))))
86 fveq2 6103 . . . . . . . . . . 11 (𝑋 = 𝑌 → (𝐹𝑋) = (𝐹𝑌))
8786oveq2d 6565 . . . . . . . . . 10 (𝑋 = 𝑌 → (𝑇 · (𝐹𝑋)) = (𝑇 · (𝐹𝑌)))
8887oveq1d 6564 . . . . . . . . 9 (𝑋 = 𝑌 → ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) = ((𝑇 · (𝐹𝑌)) + ((1 − 𝑇) · (𝐹𝑌))))
8985, 88eqeq12d 2625 . . . . . . . 8 (𝑋 = 𝑌 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ↔ (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑌)) + ((1 − 𝑇) · (𝐹𝑌)))))
9082, 89syl5ibrcom 236 . . . . . . 7 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑋 = 𝑌 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
91 olc 398 . . . . . . 7 ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
9290, 91syl6 34 . . . . . 6 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑋 = 𝑌 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))))
93 1re 9918 . . . . . . . . . . . . 13 1 ∈ ℝ
94 elioore 12076 . . . . . . . . . . . . 13 (𝑇 ∈ (0(,)1) → 𝑇 ∈ ℝ)
95 resubcl 10224 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
9693, 94, 95sylancr 694 . . . . . . . . . . . 12 (𝑇 ∈ (0(,)1) → (1 − 𝑇) ∈ ℝ)
97 eliooord 12104 . . . . . . . . . . . . . 14 (𝑇 ∈ (0(,)1) → (0 < 𝑇𝑇 < 1))
9897simprd 478 . . . . . . . . . . . . 13 (𝑇 ∈ (0(,)1) → 𝑇 < 1)
99 posdif 10400 . . . . . . . . . . . . . 14 ((𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑇 < 1 ↔ 0 < (1 − 𝑇)))
10094, 93, 99sylancl 693 . . . . . . . . . . . . 13 (𝑇 ∈ (0(,)1) → (𝑇 < 1 ↔ 0 < (1 − 𝑇)))
10198, 100mpbid 221 . . . . . . . . . . . 12 (𝑇 ∈ (0(,)1) → 0 < (1 − 𝑇))
10297simpld 474 . . . . . . . . . . . . 13 (𝑇 ∈ (0(,)1) → 0 < 𝑇)
103 ltsubpos 10399 . . . . . . . . . . . . . 14 ((𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑇 ↔ (1 − 𝑇) < 1))
10494, 93, 103sylancl 693 . . . . . . . . . . . . 13 (𝑇 ∈ (0(,)1) → (0 < 𝑇 ↔ (1 − 𝑇) < 1))
105102, 104mpbid 221 . . . . . . . . . . . 12 (𝑇 ∈ (0(,)1) → (1 − 𝑇) < 1)
106 0xr 9965 . . . . . . . . . . . . 13 0 ∈ ℝ*
10793rexri 9976 . . . . . . . . . . . . 13 1 ∈ ℝ*
108 elioo2 12087 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 − 𝑇) ∈ (0(,)1) ↔ ((1 − 𝑇) ∈ ℝ ∧ 0 < (1 − 𝑇) ∧ (1 − 𝑇) < 1)))
109106, 107, 108mp2an 704 . . . . . . . . . . . 12 ((1 − 𝑇) ∈ (0(,)1) ↔ ((1 − 𝑇) ∈ ℝ ∧ 0 < (1 − 𝑇) ∧ (1 − 𝑇) < 1))
11096, 101, 105, 109syl3anbrc 1239 . . . . . . . . . . 11 (𝑇 ∈ (0(,)1) → (1 − 𝑇) ∈ (0(,)1))
111110ad2antrl 760 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (1 − 𝑇) ∈ (0(,)1))
1126adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → 𝑌𝐷)
1133adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → 𝑋𝐷)
114112, 113jca 553 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (𝑌𝐷𝑋𝐷))
115 simprr 792 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → 𝑌 < 𝑋)
116 simpll 786 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → 𝜑)
117 breq1 4586 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (𝑥 < 𝑦𝑌 < 𝑦))
118 oveq2 6557 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑌 → (𝑡 · 𝑥) = (𝑡 · 𝑌))
119118oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑌 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦)))
120119fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))))
121 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑌 → (𝐹𝑥) = (𝐹𝑌))
122121oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑌 → (𝑡 · (𝐹𝑥)) = (𝑡 · (𝐹𝑌)))
123122oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) = ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦))))
124120, 123breq12d 4596 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → ((𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦)))))
125124ralbidv 2969 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦)))))
126125imbi2d 329 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → ((𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦)))) ↔ (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦))))))
127117, 126imbi12d 333 . . . . . . . . . . . 12 (𝑥 = 𝑌 → ((𝑥 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))) ↔ (𝑌 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦)))))))
128 breq2 4587 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑌 < 𝑦𝑌 < 𝑋))
129 oveq2 6557 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑋 → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · 𝑋))
130129oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋)))
131130fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))))
132 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
133132oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → ((1 − 𝑡) · (𝐹𝑦)) = ((1 − 𝑡) · (𝐹𝑋)))
134133oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦))) = ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋))))
135131, 134breq12d 4596 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → ((𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋)))))
136135ralbidv 2969 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦))) ↔ ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋)))))
137136imbi2d 329 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → ((𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦)))) ↔ (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋))))))
138128, 137imbi12d 333 . . . . . . . . . . . 12 (𝑦 = 𝑋 → ((𝑌 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑦))))) ↔ (𝑌 < 𝑋 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋)))))))
139127, 138, 42vtocl2ga 3247 . . . . . . . . . . 11 ((𝑌𝐷𝑋𝐷) → (𝑌 < 𝑋 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋))))))
140114, 115, 116, 139syl3c 64 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋))))
141 oveq1 6556 . . . . . . . . . . . . . 14 (𝑡 = (1 − 𝑇) → (𝑡 · 𝑌) = ((1 − 𝑇) · 𝑌))
142 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑡 = (1 − 𝑇) → (1 − 𝑡) = (1 − (1 − 𝑇)))
143142oveq1d 6564 . . . . . . . . . . . . . 14 (𝑡 = (1 − 𝑇) → ((1 − 𝑡) · 𝑋) = ((1 − (1 − 𝑇)) · 𝑋))
144141, 143oveq12d 6567 . . . . . . . . . . . . 13 (𝑡 = (1 − 𝑇) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋)) = (((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋)))
145144fveq2d 6107 . . . . . . . . . . . 12 (𝑡 = (1 − 𝑇) → (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) = (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))))
146 oveq1 6556 . . . . . . . . . . . . 13 (𝑡 = (1 − 𝑇) → (𝑡 · (𝐹𝑌)) = ((1 − 𝑇) · (𝐹𝑌)))
147142oveq1d 6564 . . . . . . . . . . . . 13 (𝑡 = (1 − 𝑇) → ((1 − 𝑡) · (𝐹𝑋)) = ((1 − (1 − 𝑇)) · (𝐹𝑋)))
148146, 147oveq12d 6567 . . . . . . . . . . . 12 (𝑡 = (1 − 𝑇) → ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋))) = (((1 − 𝑇) · (𝐹𝑌)) + ((1 − (1 − 𝑇)) · (𝐹𝑋))))
149145, 148breq12d 4596 . . . . . . . . . . 11 (𝑡 = (1 − 𝑇) → ((𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋))) ↔ (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) < (((1 − 𝑇) · (𝐹𝑌)) + ((1 − (1 − 𝑇)) · (𝐹𝑋)))))
150149rspcv 3278 . . . . . . . . . 10 ((1 − 𝑇) ∈ (0(,)1) → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹𝑌)) + ((1 − 𝑡) · (𝐹𝑋))) → (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) < (((1 − 𝑇) · (𝐹𝑌)) + ((1 − (1 − 𝑇)) · (𝐹𝑋)))))
151111, 140, 150sylc 63 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) < (((1 − 𝑇) · (𝐹𝑌)) + ((1 − (1 − 𝑇)) · (𝐹𝑋))))
152 nncan 10189 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
15362, 61, 152sylancr 694 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − (1 − 𝑇)) = 𝑇)
154153oveq1d 6564 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − (1 − 𝑇)) · 𝑋) = (𝑇 · 𝑋))
155154oveq2d 6565 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)))
15693, 60, 95sylancr 694 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℝ)
157156, 7remulcld 9949 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℝ)
158157recnd 9947 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℂ)
15960, 4remulcld 9949 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℝ)
160159recnd 9947 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℂ)
161158, 160addcomd 10117 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
162155, 161eqtrd 2644 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
163162adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
164163fveq2d 6107 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) = (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))))
165153oveq1d 6564 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − (1 − 𝑇)) · (𝐹𝑋)) = (𝑇 · (𝐹𝑋)))
166165oveq2d 6565 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · (𝐹𝑌)) + ((1 − (1 − 𝑇)) · (𝐹𝑋))) = (((1 − 𝑇) · (𝐹𝑌)) + (𝑇 · (𝐹𝑋))))
167156, 76remulcld 9949 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · (𝐹𝑌)) ∈ ℝ)
168167recnd 9947 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · (𝐹𝑌)) ∈ ℂ)
16975, 3ffvelrnd 6268 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹𝑋) ∈ ℝ)
17060, 169remulcld 9949 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 · (𝐹𝑋)) ∈ ℝ)
171170recnd 9947 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 · (𝐹𝑋)) ∈ ℂ)
172168, 171addcomd 10117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · (𝐹𝑌)) + (𝑇 · (𝐹𝑋))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))
173166, 172eqtrd 2644 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · (𝐹𝑌)) + ((1 − (1 − 𝑇)) · (𝐹𝑋))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))
174173adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (((1 − 𝑇) · (𝐹𝑌)) + ((1 − (1 − 𝑇)) · (𝐹𝑋))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))
175151, 164, 1743brtr3d 4614 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))
176175orcd 406 . . . . . . 7 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
177176expr 641 . . . . . 6 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑌 < 𝑋 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))))
17857, 92, 1773jaod 1384 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → ((𝑋 < 𝑌𝑋 = 𝑌𝑌 < 𝑋) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))))
1799, 178mpd 15 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
180179ex 449 . . 3 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 ∈ (0(,)1) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))))
181 elpri 4145 . . . 4 (𝑇 ∈ {0, 1} → (𝑇 = 0 ∨ 𝑇 = 1))
18277addid2d 10116 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (0 + (𝐹𝑌)) = (𝐹𝑌))
183169recnd 9947 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹𝑋) ∈ ℂ)
184183mul02d 10113 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (0 · (𝐹𝑋)) = 0)
185184, 79oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((0 · (𝐹𝑋)) + (1 · (𝐹𝑌))) = (0 + (𝐹𝑌)))
1864recnd 9947 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℂ)
187186mul02d 10113 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (0 · 𝑋) = 0)
188187, 70oveq12d 6567 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((0 · 𝑋) + (1 · 𝑌)) = (0 + 𝑌))
18968addid2d 10116 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (0 + 𝑌) = 𝑌)
190188, 189eqtrd 2644 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((0 · 𝑋) + (1 · 𝑌)) = 𝑌)
191190fveq2d 6107 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((0 · 𝑋) + (1 · 𝑌))) = (𝐹𝑌))
192182, 185, 1913eqtr4rd 2655 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((0 · 𝑋) + (1 · 𝑌))) = ((0 · (𝐹𝑋)) + (1 · (𝐹𝑌))))
193 oveq1 6556 . . . . . . . . 9 (𝑇 = 0 → (𝑇 · 𝑋) = (0 · 𝑋))
194 oveq2 6557 . . . . . . . . . . 11 (𝑇 = 0 → (1 − 𝑇) = (1 − 0))
195 1m0e1 11008 . . . . . . . . . . 11 (1 − 0) = 1
196194, 195syl6eq 2660 . . . . . . . . . 10 (𝑇 = 0 → (1 − 𝑇) = 1)
197196oveq1d 6564 . . . . . . . . 9 (𝑇 = 0 → ((1 − 𝑇) · 𝑌) = (1 · 𝑌))
198193, 197oveq12d 6567 . . . . . . . 8 (𝑇 = 0 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((0 · 𝑋) + (1 · 𝑌)))
199198fveq2d 6107 . . . . . . 7 (𝑇 = 0 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = (𝐹‘((0 · 𝑋) + (1 · 𝑌))))
200 oveq1 6556 . . . . . . . 8 (𝑇 = 0 → (𝑇 · (𝐹𝑋)) = (0 · (𝐹𝑋)))
201196oveq1d 6564 . . . . . . . 8 (𝑇 = 0 → ((1 − 𝑇) · (𝐹𝑌)) = (1 · (𝐹𝑌)))
202200, 201oveq12d 6567 . . . . . . 7 (𝑇 = 0 → ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) = ((0 · (𝐹𝑋)) + (1 · (𝐹𝑌))))
203199, 202eqeq12d 2625 . . . . . 6 (𝑇 = 0 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ↔ (𝐹‘((0 · 𝑋) + (1 · 𝑌))) = ((0 · (𝐹𝑋)) + (1 · (𝐹𝑌)))))
204192, 203syl5ibrcom 236 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 = 0 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
205183addid1d 10115 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝐹𝑋) + 0) = (𝐹𝑋))
206183mulid2d 9937 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 · (𝐹𝑋)) = (𝐹𝑋))
20777mul02d 10113 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (0 · (𝐹𝑌)) = 0)
208206, 207oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 · (𝐹𝑋)) + (0 · (𝐹𝑌))) = ((𝐹𝑋) + 0))
209186mulid2d 9937 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 · 𝑋) = 𝑋)
21068mul02d 10113 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (0 · 𝑌) = 0)
211209, 210oveq12d 6567 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 · 𝑋) + (0 · 𝑌)) = (𝑋 + 0))
212186addid1d 10115 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑋 + 0) = 𝑋)
213211, 212eqtrd 2644 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 · 𝑋) + (0 · 𝑌)) = 𝑋)
214213fveq2d 6107 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((1 · 𝑋) + (0 · 𝑌))) = (𝐹𝑋))
215205, 208, 2143eqtr4rd 2655 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((1 · 𝑋) + (0 · 𝑌))) = ((1 · (𝐹𝑋)) + (0 · (𝐹𝑌))))
216 oveq1 6556 . . . . . . . . 9 (𝑇 = 1 → (𝑇 · 𝑋) = (1 · 𝑋))
217 oveq2 6557 . . . . . . . . . . 11 (𝑇 = 1 → (1 − 𝑇) = (1 − 1))
218 1m1e0 10966 . . . . . . . . . . 11 (1 − 1) = 0
219217, 218syl6eq 2660 . . . . . . . . . 10 (𝑇 = 1 → (1 − 𝑇) = 0)
220219oveq1d 6564 . . . . . . . . 9 (𝑇 = 1 → ((1 − 𝑇) · 𝑌) = (0 · 𝑌))
221216, 220oveq12d 6567 . . . . . . . 8 (𝑇 = 1 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((1 · 𝑋) + (0 · 𝑌)))
222221fveq2d 6107 . . . . . . 7 (𝑇 = 1 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = (𝐹‘((1 · 𝑋) + (0 · 𝑌))))
223 oveq1 6556 . . . . . . . 8 (𝑇 = 1 → (𝑇 · (𝐹𝑋)) = (1 · (𝐹𝑋)))
224219oveq1d 6564 . . . . . . . 8 (𝑇 = 1 → ((1 − 𝑇) · (𝐹𝑌)) = (0 · (𝐹𝑌)))
225223, 224oveq12d 6567 . . . . . . 7 (𝑇 = 1 → ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) = ((1 · (𝐹𝑋)) + (0 · (𝐹𝑌))))
226222, 225eqeq12d 2625 . . . . . 6 (𝑇 = 1 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ↔ (𝐹‘((1 · 𝑋) + (0 · 𝑌))) = ((1 · (𝐹𝑋)) + (0 · (𝐹𝑌)))))
227215, 226syl5ibrcom 236 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 = 1 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
228204, 227jaod 394 . . . 4 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 = 0 ∨ 𝑇 = 1) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
229181, 228, 91syl56 35 . . 3 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 ∈ {0, 1} → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))))
230 0le1 10430 . . . . . 6 0 ≤ 1
231 prunioo 12172 . . . . . 6 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0(,)1) ∪ {0, 1}) = (0[,]1))
232106, 107, 230, 231mp3an 1416 . . . . 5 ((0(,)1) ∪ {0, 1}) = (0[,]1)
23359, 232syl6eleqr 2699 . . . 4 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ((0(,)1) ∪ {0, 1}))
234 elun 3715 . . . 4 (𝑇 ∈ ((0(,)1) ∪ {0, 1}) ↔ (𝑇 ∈ (0(,)1) ∨ 𝑇 ∈ {0, 1}))
235233, 234sylib 207 . . 3 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 ∈ (0(,)1) ∨ 𝑇 ∈ {0, 1}))
236180, 229, 235mpjaod 395 . 2 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌)))))
237 scvxcvx.3 . . . . 5 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
2381, 237cvxcl 24511 . . . 4 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
23975, 238ffvelrnd 6268 . . 3 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ∈ ℝ)
240170, 167readdcld 9948 . . 3 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∈ ℝ)
241239, 240leloed 10059 . 2 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ↔ ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))))
242236, 241mpbird 246 1 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹𝑋)) + ((1 − 𝑇) · (𝐹𝑌))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∨ w3o 1030   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ∪ cun 3538   ⊆ wss 3540  {cpr 4127   class class class wbr 4583  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145  (,)cioo 12046  [,]cicc 12049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-ico 12052  df-icc 12053 This theorem is referenced by:  amgmlem  24516  amgmwlem  42357
 Copyright terms: Public domain W3C validator