MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem3 Structured version   Visualization version   GIF version

Theorem pilem3 24011
Description: Lemma for pire 24014, pigt2lt4 24012 and sinpi 24013. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.)
Assertion
Ref Expression
pilem3 (π ∈ (2(,)4) ∧ (sin‘π) = 0)

Proof of Theorem pilem3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 10967 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
3 4re 10974 . . . . 5 4 ∈ ℝ
43a1i 11 . . . 4 (⊤ → 4 ∈ ℝ)
5 0re 9919 . . . . 5 0 ∈ ℝ
65a1i 11 . . . 4 (⊤ → 0 ∈ ℝ)
7 2lt4 11075 . . . . 5 2 < 4
87a1i 11 . . . 4 (⊤ → 2 < 4)
9 iccssre 12126 . . . . . . 7 ((2 ∈ ℝ ∧ 4 ∈ ℝ) → (2[,]4) ⊆ ℝ)
101, 3, 9mp2an 704 . . . . . 6 (2[,]4) ⊆ ℝ
11 ax-resscn 9872 . . . . . 6 ℝ ⊆ ℂ
1210, 11sstri 3577 . . . . 5 (2[,]4) ⊆ ℂ
1312a1i 11 . . . 4 (⊤ → (2[,]4) ⊆ ℂ)
14 sincn 24002 . . . . 5 sin ∈ (ℂ–cn→ℂ)
1514a1i 11 . . . 4 (⊤ → sin ∈ (ℂ–cn→ℂ))
1610sseli 3564 . . . . . 6 (𝑦 ∈ (2[,]4) → 𝑦 ∈ ℝ)
1716resincld 14712 . . . . 5 (𝑦 ∈ (2[,]4) → (sin‘𝑦) ∈ ℝ)
1817adantl 481 . . . 4 ((⊤ ∧ 𝑦 ∈ (2[,]4)) → (sin‘𝑦) ∈ ℝ)
19 sin4lt0 14764 . . . . . 6 (sin‘4) < 0
20 sincos2sgn 14763 . . . . . . 7 (0 < (sin‘2) ∧ (cos‘2) < 0)
2120simpli 473 . . . . . 6 0 < (sin‘2)
2219, 21pm3.2i 470 . . . . 5 ((sin‘4) < 0 ∧ 0 < (sin‘2))
2322a1i 11 . . . 4 (⊤ → ((sin‘4) < 0 ∧ 0 < (sin‘2)))
242, 4, 6, 8, 13, 15, 18, 23ivth2 23031 . . 3 (⊤ → ∃𝑥 ∈ (2(,)4)(sin‘𝑥) = 0)
2524trud 1484 . 2 𝑥 ∈ (2(,)4)(sin‘𝑥) = 0
26 df-pi 14642 . . . . . . 7 π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
27 elioore 12076 . . . . . . . . . . 11 (𝑥 ∈ (2(,)4) → 𝑥 ∈ ℝ)
2827adantr 480 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℝ)
295a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 ∈ ℝ)
301a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 2 ∈ ℝ)
31 2pos 10989 . . . . . . . . . . . 12 0 < 2
3231a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 < 2)
33 eliooord 12104 . . . . . . . . . . . . 13 (𝑥 ∈ (2(,)4) → (2 < 𝑥𝑥 < 4))
3433simpld 474 . . . . . . . . . . . 12 (𝑥 ∈ (2(,)4) → 2 < 𝑥)
3534adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 2 < 𝑥)
3629, 30, 28, 32, 35lttrd 10077 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 0 < 𝑥)
3728, 36elrpd 11745 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℝ+)
38 simpr 476 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘𝑥) = 0)
39 pilem1 24009 . . . . . . . . 9 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑥 ∈ ℝ+ ∧ (sin‘𝑥) = 0))
4037, 38, 39sylanbrc 695 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ (ℝ+ ∩ (sin “ {0})))
41 inss1 3795 . . . . . . . . . 10 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ+
42 rpssre 11719 . . . . . . . . . 10 + ⊆ ℝ
4341, 42sstri 3577 . . . . . . . . 9 (ℝ+ ∩ (sin “ {0})) ⊆ ℝ
4441sseli 3564 . . . . . . . . . . . 12 (𝑧 ∈ (ℝ+ ∩ (sin “ {0})) → 𝑧 ∈ ℝ+)
4544rpge0d 11752 . . . . . . . . . . 11 (𝑧 ∈ (ℝ+ ∩ (sin “ {0})) → 0 ≤ 𝑧)
4645rgen 2906 . . . . . . . . . 10 𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧
47 breq1 4586 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦𝑧 ↔ 0 ≤ 𝑧))
4847ralbidv 2969 . . . . . . . . . . 11 (𝑦 = 0 → (∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧 ↔ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧))
4948rspcev 3282 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))0 ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧)
505, 46, 49mp2an 704 . . . . . . . . 9 𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧
51 infrelb 10885 . . . . . . . . 9 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧𝑥 ∈ (ℝ+ ∩ (sin “ {0}))) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝑥)
5243, 50, 51mp3an12 1406 . . . . . . . 8 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝑥)
5340, 52syl 17 . . . . . . 7 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ≤ 𝑥)
5426, 53syl5eqbr 4618 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ≤ 𝑥)
55 simplll 794 . . . . . . . . . . . . 13 ((((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑥 ∈ (2(,)4))
56 simpr 476 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑦 ∈ (ℝ+ ∩ (sin “ {0})))
57 pilem1 24009 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝑦 ∈ ℝ+ ∧ (sin‘𝑦) = 0))
5856, 57sylib 207 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (𝑦 ∈ ℝ+ ∧ (sin‘𝑦) = 0))
5958simpld 474 . . . . . . . . . . . . 13 ((((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → 𝑦 ∈ ℝ+)
60 simpllr 795 . . . . . . . . . . . . 13 ((((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (sin‘𝑥) = 0)
6158simprd 478 . . . . . . . . . . . . 13 ((((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → (sin‘𝑦) = 0)
62 simplr 788 . . . . . . . . . . . . 13 ((((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → π < 𝑥)
6355, 59, 60, 61, 62pilem2 24010 . . . . . . . . . . . 12 ((((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) ∧ 𝑦 ∈ (ℝ+ ∩ (sin “ {0}))) → ((π + 𝑥) / 2) ≤ 𝑦)
6463ralrimiva 2949 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦)
6543a1i 11 . . . . . . . . . . . 12 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → (ℝ+ ∩ (sin “ {0})) ⊆ ℝ)
66 ne0i 3880 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ+ ∩ (sin “ {0})) → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
6740, 66syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
6867adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → (ℝ+ ∩ (sin “ {0})) ≠ ∅)
6950a1i 11 . . . . . . . . . . . 12 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧)
70 infrecl 10882 . . . . . . . . . . . . . . . . . 18 (((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
7143, 50, 70mp3an13 1407 . . . . . . . . . . . . . . . . 17 ((ℝ+ ∩ (sin “ {0})) ≠ ∅ → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
7267, 71syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ∈ ℝ)
7326, 72syl5eqel 2692 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ ℝ)
7473, 28readdcld 9948 . . . . . . . . . . . . . 14 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π + 𝑥) ∈ ℝ)
7574adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → (π + 𝑥) ∈ ℝ)
7675rehalfcld 11156 . . . . . . . . . . . 12 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → ((π + 𝑥) / 2) ∈ ℝ)
77 infregelb 10884 . . . . . . . . . . . 12 ((((ℝ+ ∩ (sin “ {0})) ⊆ ℝ ∧ (ℝ+ ∩ (sin “ {0})) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (ℝ+ ∩ (sin “ {0}))𝑦𝑧) ∧ ((π + 𝑥) / 2) ∈ ℝ) → (((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦))
7865, 68, 69, 76, 77syl31anc 1321 . . . . . . . . . . 11 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → (((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ) ↔ ∀𝑦 ∈ (ℝ+ ∩ (sin “ {0}))((π + 𝑥) / 2) ≤ 𝑦))
7964, 78mpbird 246 . . . . . . . . . 10 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → ((π + 𝑥) / 2) ≤ inf((ℝ+ ∩ (sin “ {0})), ℝ, < ))
8079, 26syl6breqr 4625 . . . . . . . . 9 (((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) ∧ π < 𝑥) → ((π + 𝑥) / 2) ≤ π)
8180ex 449 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π < 𝑥 → ((π + 𝑥) / 2) ≤ π))
8273, 28ltnled 10063 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π < 𝑥 ↔ ¬ 𝑥 ≤ π))
8373recnd 9947 . . . . . . . . . . . 12 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ ℂ)
8428recnd 9947 . . . . . . . . . . . 12 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ ℂ)
8583, 84addcomd 10117 . . . . . . . . . . 11 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π + 𝑥) = (𝑥 + π))
8685oveq1d 6564 . . . . . . . . . 10 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → ((π + 𝑥) / 2) = ((𝑥 + π) / 2))
8786breq1d 4593 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (((π + 𝑥) / 2) ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
88 avgle2 11150 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ π ∈ ℝ) → (𝑥 ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
8928, 73, 88syl2anc 691 . . . . . . . . 9 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (𝑥 ≤ π ↔ ((𝑥 + π) / 2) ≤ π))
9087, 89bitr4d 270 . . . . . . . 8 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (((π + 𝑥) / 2) ≤ π ↔ 𝑥 ≤ π))
9181, 82, 903imtr3d 281 . . . . . . 7 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (¬ 𝑥 ≤ π → 𝑥 ≤ π))
9291pm2.18d 123 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ≤ π)
9373, 28letri3d 10058 . . . . . 6 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π = 𝑥 ↔ (π ≤ 𝑥𝑥 ≤ π)))
9454, 92, 93mpbir2and 959 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π = 𝑥)
95 simpl 472 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → 𝑥 ∈ (2(,)4))
9694, 95eqeltrd 2688 . . . 4 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → π ∈ (2(,)4))
9794fveq2d 6107 . . . . 5 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘π) = (sin‘𝑥))
9897, 38eqtrd 2644 . . . 4 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (sin‘π) = 0)
9996, 98jca 553 . . 3 ((𝑥 ∈ (2(,)4) ∧ (sin‘𝑥) = 0) → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
10099rexlimiva 3010 . 2 (∃𝑥 ∈ (2(,)4)(sin‘𝑥) = 0 → (π ∈ (2(,)4) ∧ (sin‘π) = 0))
10125, 100ax-mp 5 1 (π ∈ (2(,)4) ∧ (sin‘π) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  wne 2780  wral 2896  wrex 2897  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  ccnv 5037  cima 5041  cfv 5804  (class class class)co 6549  infcinf 8230  cc 9813  cr 9814  0cc0 9815   + caddc 9818   < clt 9953  cle 9954   / cdiv 10563  2c2 10947  4c4 10949  +crp 11708  (,)cioo 12046  [,]cicc 12049  sincsin 14633  cosccos 14634  πcpi 14636  cnccncf 22487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  pigt2lt4  24012  sinpi  24013  pire  24014
  Copyright terms: Public domain W3C validator