MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem3 Structured version   Unicode version

Theorem pilem3 22610
Description: Lemma for pire 22613, pigt2lt4 22611 and sinpi 22612. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
pilem3  |-  ( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 )

Proof of Theorem pilem3
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 10605 . . . . 5  |-  2  e.  RR
21a1i 11 . . . 4  |-  ( T. 
->  2  e.  RR )
3 4re 10612 . . . . 5  |-  4  e.  RR
43a1i 11 . . . 4  |-  ( T. 
->  4  e.  RR )
5 0re 9596 . . . . 5  |-  0  e.  RR
65a1i 11 . . . 4  |-  ( T. 
->  0  e.  RR )
7 2lt4 10706 . . . . 5  |-  2  <  4
87a1i 11 . . . 4  |-  ( T. 
->  2  <  4
)
9 iccssre 11606 . . . . . . 7  |-  ( ( 2  e.  RR  /\  4  e.  RR )  ->  ( 2 [,] 4
)  C_  RR )
101, 3, 9mp2an 672 . . . . . 6  |-  ( 2 [,] 4 )  C_  RR
11 ax-resscn 9549 . . . . . 6  |-  RR  C_  CC
1210, 11sstri 3513 . . . . 5  |-  ( 2 [,] 4 )  C_  CC
1312a1i 11 . . . 4  |-  ( T. 
->  ( 2 [,] 4
)  C_  CC )
14 sincn 22601 . . . . 5  |-  sin  e.  ( CC -cn-> CC )
1514a1i 11 . . . 4  |-  ( T. 
->  sin  e.  ( CC
-cn-> CC ) )
1610sseli 3500 . . . . . 6  |-  ( y  e.  ( 2 [,] 4 )  ->  y  e.  RR )
1716resincld 13739 . . . . 5  |-  ( y  e.  ( 2 [,] 4 )  ->  ( sin `  y )  e.  RR )
1817adantl 466 . . . 4  |-  ( ( T.  /\  y  e.  ( 2 [,] 4
) )  ->  ( sin `  y )  e.  RR )
19 sin4lt0 13791 . . . . . 6  |-  ( sin `  4 )  <  0
20 sincos2sgn 13790 . . . . . . 7  |-  ( 0  <  ( sin `  2
)  /\  ( cos `  2 )  <  0
)
2120simpli 458 . . . . . 6  |-  0  <  ( sin `  2
)
2219, 21pm3.2i 455 . . . . 5  |-  ( ( sin `  4 )  <  0  /\  0  <  ( sin `  2
) )
2322a1i 11 . . . 4  |-  ( T. 
->  ( ( sin `  4
)  <  0  /\  0  <  ( sin `  2
) ) )
242, 4, 6, 8, 13, 15, 18, 23ivth2 21630 . . 3  |-  ( T. 
->  E. x  e.  ( 2 (,) 4 ) ( sin `  x
)  =  0 )
2524trud 1388 . 2  |-  E. x  e.  ( 2 (,) 4
) ( sin `  x
)  =  0
26 df-pi 13670 . . . . . . 7  |-  pi  =  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )
27 elioore 11559 . . . . . . . . . . 11  |-  ( x  e.  ( 2 (,) 4 )  ->  x  e.  RR )
2827adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  RR )
295a1i 11 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
0  e.  RR )
301a1i 11 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
2  e.  RR )
31 2pos 10627 . . . . . . . . . . . 12  |-  0  <  2
3231a1i 11 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
0  <  2 )
33 eliooord 11584 . . . . . . . . . . . . 13  |-  ( x  e.  ( 2 (,) 4 )  ->  (
2  <  x  /\  x  <  4 ) )
3433simpld 459 . . . . . . . . . . . 12  |-  ( x  e.  ( 2 (,) 4 )  ->  2  <  x )
3534adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
2  <  x )
3629, 30, 28, 32, 35lttrd 9742 . . . . . . . . . 10  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
0  <  x )
3728, 36elrpd 11254 . . . . . . . . 9  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  RR+ )
38 simpr 461 . . . . . . . . 9  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( sin `  x
)  =  0 )
39 pilem1 22608 . . . . . . . . 9  |-  ( x  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  <->  ( x  e.  RR+  /\  ( sin `  x )  =  0 ) )
4037, 38, 39sylanbrc 664 . . . . . . . 8  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) )
41 inss1 3718 . . . . . . . . . 10  |-  ( RR+  i^i  ( `' sin " {
0 } ) ) 
C_  RR+
42 rpssre 11230 . . . . . . . . . 10  |-  RR+  C_  RR
4341, 42sstri 3513 . . . . . . . . 9  |-  ( RR+  i^i  ( `' sin " {
0 } ) ) 
C_  RR
4441sseli 3500 . . . . . . . . . . . 12  |-  ( z  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
z  e.  RR+ )
4544rpge0d 11260 . . . . . . . . . . 11  |-  ( z  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
0  <_  z )
4645rgen 2824 . . . . . . . . . 10  |-  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) 0  <_  z
47 breq1 4450 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
y  <_  z  <->  0  <_  z ) )
4847ralbidv 2903 . . . . . . . . . . 11  |-  ( y  =  0  ->  ( A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z  <->  A. z  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) 0  <_  z )
)
4948rspcev 3214 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A. z  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) 0  <_  z )  ->  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) y  <_  z )
505, 46, 49mp2an 672 . . . . . . . . 9  |-  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z
51 infmrlb 10524 . . . . . . . . 9  |-  ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z  /\  x  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  <_  x )
5243, 50, 51mp3an12 1314 . . . . . . . 8  |-  ( x  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  <_  x )
5340, 52syl 16 . . . . . . 7  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  <_  x )
5426, 53syl5eqbr 4480 . . . . . 6  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  <_  x )
55 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  x  e.  ( 2 (,) 4 ) )
56 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  y  e.  (
RR+  i^i  ( `' sin " { 0 } ) ) )
57 pilem1 22608 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  <->  ( y  e.  RR+  /\  ( sin `  y )  =  0 ) )
5856, 57sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  ( y  e.  RR+  /\  ( sin `  y
)  =  0 ) )
5958simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  y  e.  RR+ )
60 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  ( sin `  x
)  =  0 )
6158simprd 463 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  ( sin `  y
)  =  0 )
62 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  pi  <  x
)
6355, 59, 60, 61, 62pilem2 22609 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ( 2 (,) 4
)  /\  ( sin `  x )  =  0 )  /\  pi  <  x )  /\  y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  ( ( pi  +  x )  / 
2 )  <_  y
)
6463ralrimiva 2878 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) ( ( pi  +  x
)  /  2 )  <_  y )
6543a1i 11 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( RR+  i^i  ( `' sin " {
0 } ) ) 
C_  RR )
66 ne0i 3791 . . . . . . . . . . . . . 14  |-  ( x  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/) )
6740, 66syl 16 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/) )
6867adantr 465 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( RR+  i^i  ( `' sin " {
0 } ) )  =/=  (/) )
6950a1i 11 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z )
70 infmrcl 10522 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  ( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  e.  RR )
7143, 50, 70mp3an13 1315 . . . . . . . . . . . . . . . . 17  |-  ( (
RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  e.  RR )
7267, 71syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  e.  RR )
7326, 72syl5eqel 2559 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  e.  RR )
7473, 28readdcld 9623 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  +  x
)  e.  RR )
7574adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( pi  +  x )  e.  RR )
7675rehalfcld 10785 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( (
pi  +  x )  /  2 )  e.  RR )
77 infmrgelb 10523 . . . . . . . . . . . 12  |-  ( ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  ( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  /\  E. y  e.  RR  A. z  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) y  <_  z )  /\  ( ( pi  +  x )  /  2
)  e.  RR )  ->  ( ( ( pi  +  x )  /  2 )  <_  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  <->  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) ( ( pi  +  x )  / 
2 )  <_  y
) )
7865, 68, 69, 76, 77syl31anc 1231 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( (
( pi  +  x
)  /  2 )  <_  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  <->  A. y  e.  (
RR+  i^i  ( `' sin " { 0 } ) ) ( ( pi  +  x )  /  2 )  <_ 
y ) )
7964, 78mpbird 232 . . . . . . . . . 10  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( (
pi  +  x )  /  2 )  <_  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  ) )
8079, 26syl6breqr 4487 . . . . . . . . 9  |-  ( ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x
)  =  0 )  /\  pi  <  x
)  ->  ( (
pi  +  x )  /  2 )  <_  pi )
8180ex 434 . . . . . . . 8  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  <  x  ->  ( ( pi  +  x )  /  2
)  <_  pi )
)
8273, 28ltnled 9731 . . . . . . . 8  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  <  x  <->  -.  x  <_  pi )
)
8373recnd 9622 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  e.  CC )
8428recnd 9622 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  CC )
8583, 84addcomd 9781 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  +  x
)  =  ( x  +  pi ) )
8685oveq1d 6299 . . . . . . . . . 10  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( ( pi  +  x )  /  2
)  =  ( ( x  +  pi )  /  2 ) )
8786breq1d 4457 . . . . . . . . 9  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( ( ( pi  +  x )  / 
2 )  <_  pi  <->  ( ( x  +  pi )  /  2 )  <_  pi ) )
88 avgle2 10779 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  pi  e.  RR )  -> 
( x  <_  pi  <->  ( ( x  +  pi )  /  2 )  <_  pi ) )
8928, 73, 88syl2anc 661 . . . . . . . . 9  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( x  <_  pi  <->  ( ( x  +  pi )  /  2 )  <_  pi ) )
9087, 89bitr4d 256 . . . . . . . 8  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( ( ( pi  +  x )  / 
2 )  <_  pi  <->  x  <_  pi ) )
9181, 82, 903imtr3d 267 . . . . . . 7  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( -.  x  <_  pi  ->  x  <_  pi ) )
9291pm2.18d 111 . . . . . 6  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  <_  pi )
9373, 28letri3d 9726 . . . . . 6  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  =  x  <-> 
( pi  <_  x  /\  x  <_  pi ) ) )
9454, 92, 93mpbir2and 920 . . . . 5  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  =  x )
95 simpl 457 . . . . 5  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  x  e.  ( 2 (,) 4 ) )
9694, 95eqeltrd 2555 . . . 4  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  ->  pi  e.  ( 2 (,) 4 ) )
9794fveq2d 5870 . . . . 5  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( sin `  pi )  =  ( sin `  x ) )
9897, 38eqtrd 2508 . . . 4  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( sin `  pi )  =  0 )
9996, 98jca 532 . . 3  |-  ( ( x  e.  ( 2 (,) 4 )  /\  ( sin `  x )  =  0 )  -> 
( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 ) )
10099rexlimiva 2951 . 2  |-  ( E. x  e.  ( 2 (,) 4 ) ( sin `  x )  =  0  ->  (
pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 ) )
10125, 100ax-mp 5 1  |-  ( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447   `'ccnv 4998   "cima 5002   ` cfv 5588  (class class class)co 6284   supcsup 7900   CCcc 9490   RRcr 9491   0cc0 9492    + caddc 9495    < clt 9628    <_ cle 9629    / cdiv 10206   2c2 10585   4c4 10587   RR+crp 11220   (,)cioo 11529   [,]cicc 11532   sincsin 13661   cosccos 13662   picpi 13664   -cn->ccncf 21143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034
This theorem is referenced by:  pigt2lt4  22611  sinpi  22612  pire  22613
  Copyright terms: Public domain W3C validator