Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infrelb Structured version   Visualization version   GIF version

Theorem infrelb 10885
 Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
infrelb ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴)
Distinct variable group:   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem infrelb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐵 ⊆ ℝ)
2 ne0i 3880 . . . 4 (𝐴𝐵𝐵 ≠ ∅)
323ad2ant3 1077 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐵 ≠ ∅)
4 simp2 1055 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦)
5 infrecl 10882 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → inf(𝐵, ℝ, < ) ∈ ℝ)
61, 3, 4, 5syl3anc 1318 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ∈ ℝ)
7 ssel2 3563 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
873adant2 1073 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐴 ∈ ℝ)
9 ltso 9997 . . . . . . 7 < Or ℝ
109a1i 11 . . . . . 6 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → < Or ℝ)
11 simpll 786 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → 𝐵 ⊆ ℝ)
122adantl 481 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → 𝐵 ≠ ∅)
13 simplr 788 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦)
14 infm3 10861 . . . . . . 7 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
1511, 12, 13, 14syl3anc 1318 . . . . . 6 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
1610, 15inflb 8278 . . . . 5 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))
1716expcom 450 . . . 4 (𝐴𝐵 → ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))))
1817pm2.43b 53 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))
19183impia 1253 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → ¬ 𝐴 < inf(𝐵, ℝ, < ))
206, 8, 19nltled 10066 1 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583   Or wor 4958  infcinf 8230  ℝcr 9814   < clt 9953   ≤ cle 9954 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148 This theorem is referenced by:  minveclem2  23005  minveclem4  23011  aalioulem2  23892  pilem2  24010  pilem3  24011  pntlem3  25098  minvecolem2  27115  minvecolem4  27120  taupilem2  32345  ptrecube  32579  heicant  32614  pellfundlb  36466  infrefilb  38541  climinf  38673  fourierdlem42  39042
 Copyright terms: Public domain W3C validator