Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnclem Structured version   Visualization version   GIF version

Theorem ftc1cnnclem 32653
 Description: Lemma for ftc1cnnc 32654; cf. ftc1lem4 23606. The stronger assumptions of ftc1cn 23610 are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
ftc1cnnclem.c (𝜑𝑐 ∈ (𝐴(,)𝐵))
ftc1cnnclem.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
ftc1cnnclem.e (𝜑𝐸 ∈ ℝ+)
ftc1cnnclem.r (𝜑𝑅 ∈ ℝ+)
ftc1cnnclem.fc ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
ftc1cnnclem.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1cnnclem.x2 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
ftc1cnnclem.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1cnnclem.y2 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
Assertion
Ref Expression
ftc1cnnclem ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑡,𝐴   𝑥,𝐵,𝑦,𝑧,𝑡   𝑥,𝐹,𝑦,𝑧,𝑡   𝜑,𝑥,𝑦,𝑧,𝑡   𝑦,𝐺,𝑧   𝑥,𝑐,𝑦,𝑧,𝑡   𝑥,𝑋,𝑧,𝑡   𝑦,𝐸,𝑡   𝑦,𝐻   𝑥,𝑌,𝑡   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑐)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑥,𝑧,𝑡,𝑐)   𝐸(𝑥,𝑧,𝑐)   𝐹(𝑐)   𝐺(𝑥,𝑡,𝑐)   𝐻(𝑥,𝑧,𝑡,𝑐)   𝑋(𝑦,𝑐)   𝑌(𝑦,𝑧,𝑐)

Proof of Theorem ftc1cnnclem
StepHypRef Expression
1 ftc1cnnc.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
2 ftc1cnnc.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
3 iccssre 12126 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ftc1cnnclem.x1 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐴[,]𝐵))
64, 5sseldd 3569 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
7 ftc1cnnclem.y1 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐴[,]𝐵))
84, 7sseldd 3569 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
9 ltle 10005 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
106, 8, 9syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
1110imp 444 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
12 ftc1cnnc.g . . . . . . . . . . 11 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
13 ftc1cnnc.le . . . . . . . . . . 11 (𝜑𝐴𝐵)
14 ssid 3587 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
1514a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
16 ioossre 12106 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℝ
1716a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
18 ftc1cnnc.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
19 ftc1cnnc.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
20 cncff 22504 . . . . . . . . . . . 12 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
2119, 20syl 17 . . . . . . . . . . 11 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
2212, 1, 2, 13, 15, 17, 18, 21, 5, 7ftc1lem1 23602 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
2311, 22syldan 486 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
241rexrd 9968 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
252rexrd 9968 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ*)
26 elicc1 12090 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
2726biimpa 500 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵))
2827simp2d 1067 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → 𝐴𝑋)
2924, 25, 5, 28syl21anc 1317 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑋)
30 iccleub 12100 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑌 ∈ (𝐴[,]𝐵)) → 𝑌𝐵)
3124, 25, 7, 30syl3anc 1318 . . . . . . . . . . . . . . . 16 (𝜑𝑌𝐵)
32 ioossioo 12136 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑋𝑌𝐵)) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
3324, 25, 29, 31, 32syl22anc 1319 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
3433sselda 3568 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ (𝐴(,)𝐵))
3521ffvelrnda 6267 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
3634, 35syldan 486 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
37 ftc1cnnclem.c . . . . . . . . . . . . . . 15 (𝜑𝑐 ∈ (𝐴(,)𝐵))
3821, 37ffvelrnd 6268 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑐) ∈ ℂ)
3938adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑐) ∈ ℂ)
4036, 39npcand 10275 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) = (𝐹𝑡))
4140itgeq2dv 23354 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
4236, 39subcld 10271 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ ℂ)
43 ioombl 23140 . . . . . . . . . . . . . . 15 (𝑋(,)𝑌) ∈ dom vol
4443a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
45 fvex 6113 . . . . . . . . . . . . . . 15 (𝐹𝑡) ∈ V
4645a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ V)
4721feqmptd 6159 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)))
4847, 18eqeltrrd 2689 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)) ∈ 𝐿1)
4933, 44, 46, 48iblss 23377 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
50 fconstmpt 5085 . . . . . . . . . . . . . 14 ((𝑋(,)𝑌) × {(𝐹𝑐)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐))
51 mblvol 23105 . . . . . . . . . . . . . . . . 17 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
5243, 51ax-mp 5 . . . . . . . . . . . . . . . 16 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
53 ioossicc 12130 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
5453a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
55 iccmbl 23141 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
566, 8, 55syl2anc 691 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
57 mblss 23106 . . . . . . . . . . . . . . . . . 18 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
5856, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
59 mblvol 23105 . . . . . . . . . . . . . . . . . . 19 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
6056, 59syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
61 iccvolcl 23142 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
626, 8, 61syl2anc 691 . . . . . . . . . . . . . . . . . 18 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6360, 62eqeltrrd 2689 . . . . . . . . . . . . . . . . 17 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
64 ovolsscl 23061 . . . . . . . . . . . . . . . . 17 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6554, 58, 63, 64syl3anc 1318 . . . . . . . . . . . . . . . 16 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6652, 65syl5eqel 2692 . . . . . . . . . . . . . . 15 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
67 iblconst 23390 . . . . . . . . . . . . . . 15 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
6844, 66, 38, 67syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
6950, 68syl5eqelr 2693 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ 𝐿1)
70 eqid 2610 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7170subcn 22477 . . . . . . . . . . . . . . . 16 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
7271a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
7321, 33feqresmpt 6160 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
74 rescncf 22508 . . . . . . . . . . . . . . . . 17 ((𝑋(,)𝑌) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
7533, 19, 74sylc 63 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7673, 75eqeltrrd 2689 . . . . . . . . . . . . . . 15 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
77 ioossre 12106 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ ℝ
78 ax-resscn 9872 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℂ
7977, 78sstri 3577 . . . . . . . . . . . . . . . . 17 (𝑋(,)𝑌) ⊆ ℂ
80 ssid 3587 . . . . . . . . . . . . . . . . 17 ℂ ⊆ ℂ
81 cncfmptc 22522 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8279, 80, 81mp3an23 1408 . . . . . . . . . . . . . . . 16 ((𝐹𝑐) ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8338, 82syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8470, 72, 76, 83cncfmpt2f 22525 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
85 cnmbf 23232 . . . . . . . . . . . . . 14 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
8643, 84, 85sylancr 694 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
8736, 49, 39, 69, 86iblsubnc 32641 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ 𝐿1)
8840mpteq2dva 4672 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
8988, 73eqtr4d 2647 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝐹 ↾ (𝑋(,)𝑌)))
90 iblmbf 23340 . . . . . . . . . . . . . . 15 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
9118, 90syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ MblFn)
92 mbfres 23217 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑋(,)𝑌) ∈ dom vol) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
9391, 43, 92sylancl 693 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
9489, 93eqeltrd 2688 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) ∈ MblFn)
9542, 87, 39, 69, 94itgaddnc 32640 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
9641, 95eqtr3d 2646 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
9796adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
98 itgconst 23391 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
9944, 66, 38, 98syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
10099adantr 480 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
1016adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
1028adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
103 ovolioo 23143 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
104101, 102, 11, 103syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
10552, 104syl5eq 2656 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
106105oveq2d 6565 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝑐) · (𝑌𝑋)))
107100, 106eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (𝑌𝑋)))
108107oveq2d 6565 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
10923, 97, 1083eqtrd 2648 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
110109oveq1d 6564 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)))
111 ovex 6577 . . . . . . . . . . 11 ((𝐹𝑡) − (𝐹𝑐)) ∈ V
112111a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ V)
113112, 87itgcl 23356 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
114113adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
11538adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐹𝑐) ∈ ℂ)
1168, 6resubcld 10337 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℝ)
117116recnd 9947 . . . . . . . . . 10 (𝜑 → (𝑌𝑋) ∈ ℂ)
118117adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
119115, 118mulcld 9939 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (𝑌𝑋)) ∈ ℂ)
1206, 8posdifd 10493 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
121120biimpa 500 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
122121gt0ne0d 10471 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
123114, 119, 118, 122divdird 10718 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))))
124115, 118, 122divcan4d 10686 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝑐))
125124oveq2d 6565 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
126110, 123, 1253eqtrd 2648 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
127126oveq1d 6564 . . . . 5 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐)) = (((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)) − (𝐹𝑐)))
128114, 118, 122divcld 10680 . . . . . 6 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
129128, 115pncand 10272 . . . . 5 ((𝜑𝑋 < 𝑌) → (((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)) − (𝐹𝑐)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)))
130127, 129eqtrd 2644 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)))
131130fveq2d 6107 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))))
132114, 118, 122absdivd 14042 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))))
133116adantr 480 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
134 0re 9919 . . . . . . 7 0 ∈ ℝ
135 ltle 10005 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
136134, 133, 135sylancr 694 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
137121, 136mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
138133, 137absidd 14009 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
139138oveq2d 6565 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
140131, 132, 1393eqtrd 2648 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
141114abscld 14023 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ)
14242abscld 14023 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ)
143 cncfss 22510 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
14478, 80, 143mp2an 704 . . . . . . . . . . 11 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
145 abscncf 22512 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
146144, 145sselii 3565 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℂ)
147146a1i 11 . . . . . . . . 9 (𝜑 → abs ∈ (ℂ–cn→ℂ))
148147, 84cncfmpt1f 22524 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
149 cnmbf 23232 . . . . . . . 8 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
15043, 148, 149sylancr 694 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
151112, 87, 150iblabsnc 32644 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ 𝐿1)
152142, 151itgrecl 23370 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
153152adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
154 ftc1cnnclem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
155154rpred 11748 . . . . . 6 (𝜑𝐸 ∈ ℝ)
156116, 155remulcld 9949 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
157156adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
158113cjcld 13784 . . . . . . . . 9 (𝜑 → (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ)
159 cncfmptc 22522 . . . . . . . . . 10 (((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
16079, 80, 159mp3an23 1408 . . . . . . . . 9 ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
161158, 160syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
162 nfcv 2751 . . . . . . . . . 10 𝑥((𝐹𝑡) − (𝐹𝑐))
163 nfcsb1v 3515 . . . . . . . . . 10 𝑡𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))
164 csbeq1a 3508 . . . . . . . . . 10 (𝑡 = 𝑥 → ((𝐹𝑡) − (𝐹𝑐)) = 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
165162, 163, 164cbvmpt 4677 . . . . . . . . 9 (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
166165, 84syl5eqelr 2693 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
167161, 166mulcncf 23023 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
168 cnmbf 23232 . . . . . . 7 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16943, 167, 168sylancr 694 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
17042, 87, 150, 169itgabsnc 32649 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
171170adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
172 simpr 476 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
173155adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
174 fconstmpt 5085 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
175154rpcnd 11750 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
176 iblconst 23390 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
17744, 66, 175, 176syl3anc 1318 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
178174, 177syl5eqelr 2693 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
179 cncfmptc 22522 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
18079, 80, 179mp3an23 1408 . . . . . . . . . . . 12 (𝐸 ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
181175, 180syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
18270, 72, 181, 148cncfmpt2f 22525 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
183 cnmbf 23232 . . . . . . . . . 10 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
18443, 182, 183sylancr 694 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
185173, 178, 142, 151, 184iblsubnc 32641 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
186185adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
187 ftc1cnnclem.fc . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
188187ralrimiva 2949 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
189188adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
19016, 37sseldi 3566 . . . . . . . . . . . . . 14 (𝜑𝑐 ∈ ℝ)
191 ftc1cnnclem.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
192191rpred 11748 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
193190, 192resubcld 10337 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) ∈ ℝ)
194193adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) ∈ ℝ)
1956adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
196 elioore 12076 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑋(,)𝑌) → 𝑡 ∈ ℝ)
197196adantl 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
198 ftc1cnnclem.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
1996, 190, 192absdifltd 14020 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅))))
200198, 199mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅)))
201200simpld 474 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) < 𝑋)
202201adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑋)
203 eliooord 12104 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
204203adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
205204simpld 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
206194, 195, 197, 202, 205lttrd 10077 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑡)
2078adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
208190, 192readdcld 9948 . . . . . . . . . . . . 13 (𝜑 → (𝑐 + 𝑅) ∈ ℝ)
209208adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 + 𝑅) ∈ ℝ)
210204simprd 478 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
211 ftc1cnnclem.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
2128, 190, 192absdifltd 14020 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅))))
213211, 212mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅)))
214213simprd 478 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝑐 + 𝑅))
215214adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝑐 + 𝑅))
216197, 207, 209, 210, 215lttrd 10077 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝑐 + 𝑅))
217190adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑐 ∈ ℝ)
218192adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
219197, 217, 218absdifltd 14020 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑡𝑡 < (𝑐 + 𝑅))))
220206, 216, 219mpbir2and 959 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝑐)) < 𝑅)
221 oveq1 6556 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑦𝑐) = (𝑡𝑐))
222221fveq2d 6107 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝑐)) = (abs‘(𝑡𝑐)))
223222breq1d 4593 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝑐)) < 𝑅 ↔ (abs‘(𝑡𝑐)) < 𝑅))
224 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
225224oveq1d 6564 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → ((𝐹𝑦) − (𝐹𝑐)) = ((𝐹𝑡) − (𝐹𝑐)))
226225fveq2d 6107 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘((𝐹𝑦) − (𝐹𝑐))) = (abs‘((𝐹𝑡) − (𝐹𝑐))))
227226breq1d 4593 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸 ↔ (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸))
228223, 227imbi12d 333 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) ↔ ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
229228rspcv 3278 . . . . . . . . . 10 (𝑡 ∈ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) → ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
23034, 189, 220, 229syl3c 64 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)
231 difrp 11744 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
232142, 173, 231syl2anc 691 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
233230, 232mpbid 221 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
234233adantlr 747 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
235182adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
236172, 186, 234, 235itggt0cn 32652 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡)
237173, 178, 142, 151, 184itgsubnc 32642 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
238237adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
239 itgconst 23391 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
24044, 66, 175, 239syl3anc 1318 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
241240adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
242105oveq2d 6565 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
243175, 117mulcomd 9940 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
244243adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
245241, 242, 2443eqtrd 2648 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
246245oveq1d 6564 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
247238, 246eqtrd 2644 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
248236, 247breqtrd 4609 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
249152, 156posdifd 10493 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)))
250249biimpar 501 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
251248, 250syldan 486 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
252141, 153, 157, 171, 251lelttrd 10074 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸))
253155adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
254 ltdivmul 10777 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
255141, 253, 133, 121, 254syl112anc 1322 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
256252, 255mpbird 246 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸)
257140, 256eqbrtrd 4605 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  ⦋csb 3499   ∖ cdif 3537   ⊆ wss 3540  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  dom cdm 5038   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815   + caddc 9818   · cmul 9820  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℝ+crp 11708  (,)cioo 12046  [,]cicc 12049  ∗ccj 13684  abscabs 13822  TopOpenctopn 15905  ℂfldccnfld 19567   Cn ccn 20838   ×t ctx 21173  –cn→ccncf 22487  vol*covol 23038  volcvol 23039  MblFncmbf 23189  𝐿1cibl 23192  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243 This theorem is referenced by:  ftc1cnnc  32654
 Copyright terms: Public domain W3C validator