Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgabsnc Structured version   Visualization version   GIF version

Theorem itgabsnc 32649
 Description: Choice-free analogue of itgabs 23407. (Contributed by Brendan Leahy, 19-Nov-2017.) (Revised by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
itgabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgabsnc.m1 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
itgabsnc.m2 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgabsnc (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝑉,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgabsnc
StepHypRef Expression
1 itgabsnc.1 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 itgabsnc.2 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
31, 2itgcl 23356 . . . . . . . . . . 11 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
43cjcld 13784 . . . . . . . . . 10 (𝜑 → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5 iblmbf 23340 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
62, 5syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
76, 1mbfmptcl 23210 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
9 nfv 1830 . . . . . . . . . . . . 13 𝑦 𝐵 ∈ ℂ
10 nfcsb1v 3515 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
1110nfel1 2765 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
12 csbeq1a 3508 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1312eleq1d 2672 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
149, 11, 13cbvral 3143 . . . . . . . . . . . 12 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
158, 14sylib 207 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
1615r19.21bi 2916 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
17 nfcv 2751 . . . . . . . . . . . 12 𝑦𝐵
1817, 10, 12cbvmpt 4677 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
1918, 2syl5eqelr 2693 . . . . . . . . . 10 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐵) ∈ 𝐿1)
20 itgabsnc.m2 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)
214, 16, 19, 20iblmulc2nc 32645 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1)
224adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
2322, 16mulcld 9939 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ ℂ)
2423iblcn 23371 . . . . . . . . 9 (𝜑 → ((𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1 ↔ ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)))
2521, 24mpbid 221 . . . . . . . 8 (𝜑 → ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1))
2625simpld 474 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
2722, 16absmuld 14041 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)))
2827mpteq2dva 4672 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) = (𝑦𝐴 ↦ ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵))))
296, 1mbfdm2 23211 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom vol)
3022abscld 14023 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ)
3116abscld 14023 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘𝑦 / 𝑥𝐵) ∈ ℝ)
32 fconstmpt 5085 . . . . . . . . . . . 12 (𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦𝐴 ↦ (abs‘(∗‘∫𝐴𝐵 d𝑥)))
3332a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦𝐴 ↦ (abs‘(∗‘∫𝐴𝐵 d𝑥))))
34 nfcv 2751 . . . . . . . . . . . . 13 𝑦(abs‘𝐵)
35 nfcv 2751 . . . . . . . . . . . . . 14 𝑥abs
3635, 10nffv 6110 . . . . . . . . . . . . 13 𝑥(abs‘𝑦 / 𝑥𝐵)
3712fveq2d 6107 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘𝐵) = (abs‘𝑦 / 𝑥𝐵))
3834, 36, 37cbvmpt 4677 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵))
3938a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)))
4029, 30, 31, 33, 39offval2 6812 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) = (𝑦𝐴 ↦ ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵))))
4128, 40eqtr4d 2647 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) = ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))))
42 itgabsnc.m1 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
434abscld 14023 . . . . . . . . . 10 (𝜑 → (abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ)
447abscld 14023 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4544recnd 9947 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℂ)
46 eqid 2610 . . . . . . . . . . 11 (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑥𝐴 ↦ (abs‘𝐵))
4745, 46fmptd 6292 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)):𝐴⟶ℂ)
4842, 43, 47mbfmulc2re 23221 . . . . . . . . 9 (𝜑 → ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) ∈ MblFn)
4941, 48eqeltrd 2688 . . . . . . . 8 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ MblFn)
5023, 21, 49iblabsnc 32644 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
5123recld 13782 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
5223abscld 14023 . . . . . . 7 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
5323releabsd 14038 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ≤ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)))
5426, 50, 51, 52, 53itgle 23382 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 ≤ ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
553abscld 14023 . . . . . . . . 9 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
5655recnd 9947 . . . . . . . 8 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5756sqvald 12867 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)))
583absvalsqd 14029 . . . . . . . . . 10 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)))
593, 4mulcomd 9940 . . . . . . . . . 10 (𝜑 → (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥))
6012, 17, 10cbvitg 23348 . . . . . . . . . . . 12 𝐴𝐵 d𝑥 = ∫𝐴𝑦 / 𝑥𝐵 d𝑦
6160oveq2i 6560 . . . . . . . . . . 11 ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦)
624, 16, 19, 20itgmulc2nc 32648 . . . . . . . . . . 11 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6361, 62syl5eq 2656 . . . . . . . . . 10 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6458, 59, 633eqtrd 2648 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6564fveq2d 6107 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦))
6655resqcld 12897 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) ∈ ℝ)
6766rered 13812 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = ((abs‘∫𝐴𝐵 d𝑥)↑2))
68 ovex 6577 . . . . . . . . . 10 ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ V
6968a1i 11 . . . . . . . . 9 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ V)
7069, 21itgre 23373 . . . . . . . 8 (𝜑 → (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7165, 67, 703eqtr3d 2652 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7257, 71eqtr3d 2646 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7337, 34, 36cbvitg 23348 . . . . . . . 8 𝐴(abs‘𝐵) d𝑥 = ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦
7473oveq2i 6560 . . . . . . 7 ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦)
751, 2, 42iblabsnc 32644 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
7638, 75syl5eqelr 2693 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)) ∈ 𝐿1)
7755adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
78 fconstmpt 5085 . . . . . . . . . . . 12 (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥))
7978a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥)))
8029, 77, 31, 79, 39offval2 6812 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) = (𝑦𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵))))
8142, 55, 47mbfmulc2re 23221 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) ∈ MblFn)
8280, 81eqeltrrd 2689 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵))) ∈ MblFn)
8356, 31, 76, 82itgmulc2nc 32648 . . . . . . . 8 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
843adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → ∫𝐴𝐵 d𝑥 ∈ ℂ)
8584abscjd 14037 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) = (abs‘∫𝐴𝐵 d𝑥))
8685oveq1d 6564 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
8727, 86eqtrd 2644 . . . . . . . . 9 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
8887itgeq2dv 23354 . . . . . . . 8 (𝜑 → ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
8983, 88eqtr4d 2647 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
9074, 89syl5eq 2656 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
9154, 72, 903brtr4d 4615 . . . . 5 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
9291adantr 480 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
9355adantr 480 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
9444, 75itgrecl 23370 . . . . . 6 (𝜑 → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
9594adantr 480 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
96 simpr 476 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → 0 < (abs‘∫𝐴𝐵 d𝑥))
97 lemul2 10755 . . . . 5 (((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ ∧ ((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ 0 < (abs‘∫𝐴𝐵 d𝑥))) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
9893, 95, 93, 96, 97syl112anc 1322 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
9992, 98mpbird 246 . . 3 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
10099ex 449 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
1017absge0d 14031 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
10275, 44, 101itgge0 23383 . . 3 (𝜑 → 0 ≤ ∫𝐴(abs‘𝐵) d𝑥)
103 breq1 4586 . . 3 (0 = (abs‘∫𝐴𝐵 d𝑥) → (0 ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
104102, 103syl5ibcom 234 . 2 (𝜑 → (0 = (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
1053absge0d 14031 . . 3 (𝜑 → 0 ≤ (abs‘∫𝐴𝐵 d𝑥))
106 0re 9919 . . . 4 0 ∈ ℝ
107 leloe 10003 . . . 4 ((0 ∈ ℝ ∧ (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
108106, 55, 107sylancr 694 . . 3 (𝜑 → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
109105, 108mpbid 221 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))
110100, 104, 109mpjaod 395 1 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  ⦋csb 3499  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  dom cdm 5038  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793  ℂcc 9813  ℝcr 9814  0cc0 9815   · cmul 9820   < clt 9953   ≤ cle 9954  2c2 10947  ↑cexp 12722  ∗ccj 13684  ℜcre 13685  ℑcim 13686  abscabs 13822  volcvol 23039  MblFncmbf 23189  𝐿1cibl 23192  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243 This theorem is referenced by:  ftc1cnnclem  32653  ftc2nc  32664
 Copyright terms: Public domain W3C validator