Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncfmpt1f | Structured version Visualization version GIF version |
Description: Composition of continuous functions. –cn→ analogue of cnmpt11f 21277. (Contributed by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
cncfmpt1f.1 | ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
cncfmpt1f.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
cncfmpt1f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmpt1f.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
2 | cncff 22504 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | eqid 2610 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | |
5 | 4 | fmpt 6289 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
6 | 3, 5 | sylibr 223 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) |
7 | eqidd 2611 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
8 | cncfmpt1f.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | |
9 | cncff 22504 | . . . . 5 ⊢ (𝐹 ∈ (ℂ–cn→ℂ) → 𝐹:ℂ⟶ℂ) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
11 | 10 | feqmptd 6159 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹‘𝑦))) |
12 | fveq2 6103 | . . 3 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
13 | 6, 7, 11, 12 | fmptcof 6304 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴))) |
14 | 1, 8 | cncfco 22518 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ (𝑋–cn→ℂ)) |
15 | 13, 14 | eqeltrrd 2689 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ∀wral 2896 ↦ cmpt 4643 ∘ ccom 5042 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 –cn→ccncf 22487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-2 10956 df-cj 13687 df-re 13688 df-im 13689 df-abs 13824 df-cncf 22489 |
This theorem is referenced by: taylthlem2 23932 sincn 24002 coscn 24003 pige3 24073 ftc1cnnclem 32653 ftc2nc 32664 itgcoscmulx 38861 itgsincmulx 38866 dirkeritg 38995 dirkercncflem2 38997 dirkercncflem4 38999 fourierdlem16 39016 fourierdlem21 39021 fourierdlem22 39022 fourierdlem39 39039 fourierdlem58 39057 fourierdlem62 39061 fourierdlem68 39067 fourierdlem73 39072 fourierdlem76 39075 fourierdlem78 39077 fourierdlem83 39082 sqwvfoura 39121 sqwvfourb 39122 etransclem18 39145 etransclem46 39173 |
Copyright terms: Public domain | W3C validator |