MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem4 Structured version   Visualization version   GIF version

Theorem ftc1lem4 23606
Description: Lemma for ftc1 23609. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
ftc1.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1.y2 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem4 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)   𝑌(𝑦,𝑧)

Proof of Theorem ftc1lem4
StepHypRef Expression
1 ftc1.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
2 ftc1.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
3 iccssre 12126 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ftc1.x1 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐴[,]𝐵))
64, 5sseldd 3569 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
7 ftc1.y1 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐴[,]𝐵))
84, 7sseldd 3569 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
9 ltle 10005 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
106, 8, 9syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
1110imp 444 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
12 ftc1.g . . . . . . . . . . 11 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
13 ftc1.le . . . . . . . . . . 11 (𝜑𝐴𝐵)
14 ftc1.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
15 ftc1.d . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℝ)
16 ftc1.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
17 ftc1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝐴(,)𝐵))
18 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
19 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
20 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
21 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
2212, 1, 2, 13, 14, 15, 16, 17, 18, 19, 20, 21ftc1lem3 23605 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
2312, 1, 2, 13, 14, 15, 16, 22, 5, 7ftc1lem1 23602 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
2411, 23syldan 486 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
251rexrd 9968 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
26 elicc2 12109 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
271, 2, 26syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
285, 27mpbid 221 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
2928simp2d 1067 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑋)
30 iooss1 12081 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
3125, 29, 30syl2anc 691 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
322rexrd 9968 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
33 elicc2 12109 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
341, 2, 33syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
357, 34mpbid 221 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
3635simp3d 1068 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌𝐵)
37 iooss2 12082 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
3832, 36, 37syl2anc 691 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
3931, 38sstrd 3578 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
4039, 14sstrd 3578 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
4140sselda 3568 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
4222ffvelrnda 6267 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4341, 42syldan 486 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
4414, 17sseldd 3569 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐷)
4522, 44ffvelrnd 6268 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐶) ∈ ℂ)
4645adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝐶) ∈ ℂ)
4743, 46npcand 10275 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) = (𝐹𝑡))
4847itgeq2dv 23354 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
4943, 46subcld 10271 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ ℂ)
50 ioombl 23140 . . . . . . . . . . . . . . 15 (𝑋(,)𝑌) ∈ dom vol
5150a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
52 fvex 6113 . . . . . . . . . . . . . . 15 (𝐹𝑡) ∈ V
5352a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
5422feqmptd 6159 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
5554, 16eqeltrrd 2689 . . . . . . . . . . . . . 14 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
5640, 51, 53, 55iblss 23377 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
57 fconstmpt 5085 . . . . . . . . . . . . . 14 ((𝑋(,)𝑌) × {(𝐹𝐶)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶))
58 mblvol 23105 . . . . . . . . . . . . . . . . 17 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
5950, 58ax-mp 5 . . . . . . . . . . . . . . . 16 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
60 ioossicc 12130 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
6160a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
62 iccmbl 23141 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
636, 8, 62syl2anc 691 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
64 mblss 23106 . . . . . . . . . . . . . . . . . 18 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
6563, 64syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
66 mblvol 23105 . . . . . . . . . . . . . . . . . . 19 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
6763, 66syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
68 iccvolcl 23142 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
696, 8, 68syl2anc 691 . . . . . . . . . . . . . . . . . 18 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
7067, 69eqeltrrd 2689 . . . . . . . . . . . . . . . . 17 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
71 ovolsscl 23061 . . . . . . . . . . . . . . . . 17 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
7261, 65, 70, 71syl3anc 1318 . . . . . . . . . . . . . . . 16 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
7359, 72syl5eqel 2692 . . . . . . . . . . . . . . 15 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
74 iblconst 23390 . . . . . . . . . . . . . . 15 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
7551, 73, 45, 74syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
7657, 75syl5eqelr 2693 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶)) ∈ 𝐿1)
7743, 56, 46, 76iblsub 23394 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝐶))) ∈ 𝐿1)
7849, 77, 46, 76itgadd 23397 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
7948, 78eqtr3d 2646 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
8079adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
81 itgconst 23391 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
8251, 73, 45, 81syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
8382adantr 480 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
846adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
858adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
86 ovolioo 23143 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
8784, 85, 11, 86syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
8859, 87syl5eq 2656 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
8988oveq2d 6565 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝐶) · (𝑌𝑋)))
9083, 89eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (𝑌𝑋)))
9190oveq2d 6565 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
9224, 80, 913eqtrd 2648 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
9392oveq1d 6564 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)))
94 ovex 6577 . . . . . . . . . . 11 ((𝐹𝑡) − (𝐹𝐶)) ∈ V
9594a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ V)
9695, 77itgcl 23356 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
9796adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
9845adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐹𝐶) ∈ ℂ)
998, 6resubcld 10337 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℝ)
10099adantr 480 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
101100recnd 9947 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
10298, 101mulcld 9939 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (𝑌𝑋)) ∈ ℂ)
1036, 8posdifd 10493 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
104103biimpa 500 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
105104gt0ne0d 10471 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
10697, 102, 101, 105divdird 10718 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))))
10798, 101, 105divcan4d 10686 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝐶))
108107oveq2d 6565 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
10993, 106, 1083eqtrd 2648 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
110109oveq1d 6564 . . . . 5 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶)) = (((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)) − (𝐹𝐶)))
11197, 101, 105divcld 10680 . . . . . 6 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
112111, 98pncand 10272 . . . . 5 ((𝜑𝑋 < 𝑌) → (((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)) − (𝐹𝐶)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)))
113110, 112eqtrd 2644 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)))
114113fveq2d 6107 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))))
11597, 101, 105absdivd 14042 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))))
116 0re 9919 . . . . . . 7 0 ∈ ℝ
117 ltle 10005 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
118116, 100, 117sylancr 694 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
119104, 118mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
120100, 119absidd 14009 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
121120oveq2d 6565 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
122114, 115, 1213eqtrd 2648 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
12396abscld 14023 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
124123adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
12549abscld 14023 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ)
12695, 77iblabs 23401 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ 𝐿1)
127125, 126itgrecl 23370 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
128127adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
129 ftc1.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
130129rpred 11748 . . . . . 6 (𝜑𝐸 ∈ ℝ)
13199, 130remulcld 9949 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
132131adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
13349, 77itgabs 23407 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
134133adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
135104, 88breqtrrd 4611 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (vol‘(𝑋(,)𝑌)))
136130adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
137 fconstmpt 5085 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
138130recnd 9947 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
139 iblconst 23390 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
14051, 73, 138, 139syl3anc 1318 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
141137, 140syl5eqelr 2693 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
142136, 141, 125, 126iblsub 23394 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
143142adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
144 ftc1.fc . . . . . . . . . . . 12 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
145144ralrimiva 2949 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
146145adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
14715, 44sseldd 3569 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
148 ftc1.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
149148rpred 11748 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
150147, 149resubcld 10337 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) ∈ ℝ)
151150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) ∈ ℝ)
1526adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
15340, 15sstrd 3578 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
154153sselda 3568 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
155 ftc1.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
1566, 147, 149absdifltd 14020 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅))))
157155, 156mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅)))
158157simpld 474 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) < 𝑋)
159158adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑋)
160 eliooord 12104 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
161160adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
162161simpld 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
163151, 152, 154, 159, 162lttrd 10077 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑡)
1648adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
165147, 149readdcld 9948 . . . . . . . . . . . . 13 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
166165adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶 + 𝑅) ∈ ℝ)
167161simprd 478 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
168 ftc1.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
1698, 147, 149absdifltd 14020 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅))))
170168, 169mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅)))
171170simprd 478 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝐶 + 𝑅))
172171adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝐶 + 𝑅))
173154, 164, 166, 167, 172lttrd 10077 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝐶 + 𝑅))
174147adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℝ)
175149adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
176154, 174, 175absdifltd 14020 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑡𝑡 < (𝐶 + 𝑅))))
177163, 173, 176mpbir2and 959 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝐶)) < 𝑅)
178 oveq1 6556 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝑦𝐶) = (𝑡𝐶))
179178fveq2d 6107 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝐶)) = (abs‘(𝑡𝐶)))
180179breq1d 4593 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝐶)) < 𝑅 ↔ (abs‘(𝑡𝐶)) < 𝑅))
181 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
182181oveq1d 6564 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → ((𝐹𝑦) − (𝐹𝐶)) = ((𝐹𝑡) − (𝐹𝐶)))
183182fveq2d 6107 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘((𝐹𝑦) − (𝐹𝐶))) = (abs‘((𝐹𝑡) − (𝐹𝐶))))
184183breq1d 4593 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸 ↔ (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸))
185180, 184imbi12d 333 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸) ↔ ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)))
186185rspcv 3278 . . . . . . . . . 10 (𝑡𝐷 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸) → ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)))
18741, 146, 177, 186syl3c 64 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)
188 difrp 11744 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
189125, 136, 188syl2anc 691 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
190187, 189mpbid 221 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
191190adantlr 747 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
192135, 143, 191itggt0 23414 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡)
193136, 141, 125, 126itgsub 23398 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
194193adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
195 itgconst 23391 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
19651, 73, 138, 195syl3anc 1318 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
197196adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
19888oveq2d 6565 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
19999recnd 9947 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℂ)
200138, 199mulcomd 9940 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
201200adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
202197, 198, 2013eqtrd 2648 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
203202oveq1d 6564 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
204194, 203eqtrd 2644 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
205192, 204breqtrd 4609 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
206127, 131posdifd 10493 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)))
207206biimpar 501 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
208205, 207syldan 486 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
209124, 128, 132, 134, 208lelttrd 10074 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸))
21097abscld 14023 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
211130adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
212 ltdivmul 10777 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
213210, 211, 100, 104, 212syl112anc 1322 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
214209, 213mpbird 246 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸)
215122, 214eqbrtrd 4605 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  +crp 11708  (,)cioo 12046  [,]cicc 12049  abscabs 13822  t crest 15904  TopOpenctopn 15905  fldccnfld 19567   CnP ccnp 20839  vol*covol 23038  volcvol 23039  𝐿1cibl 23192  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243
This theorem is referenced by:  ftc1lem5  23607
  Copyright terms: Public domain W3C validator