MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl Structured version   Visualization version   GIF version

Theorem ioombl 23140
Description: An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
ioombl (𝐴(,)𝐵) ∈ dom vol

Proof of Theorem ioombl
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snunioo 12169 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
213expa 1257 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
32adantrr 749 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
4 lbico1 12099 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
543expa 1257 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
65adantrr 749 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ (𝐴[,)𝐵))
76snssd 4281 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ⊆ (𝐴[,)𝐵))
8 iccid 12091 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
98ad2antrr 758 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴[,]𝐴) = {𝐴})
109ineq1d 3775 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ({𝐴} ∩ (𝐴(,)𝐵)))
11 simpll 786 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ ℝ*)
12 simplr 788 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐵 ∈ ℝ*)
13 df-icc 12053 . . . . . . . . . . 11 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
14 df-ioo 12050 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
15 xrltnle 9984 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
1613, 14, 15ixxdisj 12061 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ∅)
1711, 11, 12, 16syl3anc 1318 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,]𝐴) ∩ (𝐴(,)𝐵)) = ∅)
1810, 17eqtr3d 2646 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ({𝐴} ∩ (𝐴(,)𝐵)) = ∅)
19 uneqdifeq 4009 . . . . . . . 8 (({𝐴} ⊆ (𝐴[,)𝐵) ∧ ({𝐴} ∩ (𝐴(,)𝐵)) = ∅) → (({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵)))
207, 18, 19syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵)))
213, 20mpbid 221 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵))
22 mnfxr 9975 . . . . . . . . . 10 -∞ ∈ ℝ*
2322a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → -∞ ∈ ℝ*)
24 simprr 792 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → -∞ < 𝐴)
25 simprl 790 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 < 𝐵)
26 xrre2 11875 . . . . . . . . 9 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
2723, 11, 12, 24, 25, 26syl32anc 1326 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → 𝐴 ∈ ℝ)
28 icombl 23139 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
2927, 12, 28syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴[,)𝐵) ∈ dom vol)
3027snssd 4281 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ⊆ ℝ)
31 ovolsn 23070 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘{𝐴}) = 0)
3227, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (vol*‘{𝐴}) = 0)
33 nulmbl 23110 . . . . . . . 8 (({𝐴} ⊆ ℝ ∧ (vol*‘{𝐴}) = 0) → {𝐴} ∈ dom vol)
3430, 32, 33syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → {𝐴} ∈ dom vol)
35 difmbl 23118 . . . . . . 7 (((𝐴[,)𝐵) ∈ dom vol ∧ {𝐴} ∈ dom vol) → ((𝐴[,)𝐵) ∖ {𝐴}) ∈ dom vol)
3629, 34, 35syl2anc 691 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → ((𝐴[,)𝐵) ∖ {𝐴}) ∈ dom vol)
3721, 36eqeltrrd 2689 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ -∞ < 𝐴)) → (𝐴(,)𝐵) ∈ dom vol)
3837expr 641 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ < 𝐴 → (𝐴(,)𝐵) ∈ dom vol))
39 uncom 3719 . . . . . . . . 9 ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ((-∞(,)𝐵) ∪ (𝐵[,)+∞))
4022a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ ∈ ℝ*)
41 simplr 788 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
42 pnfxr 9971 . . . . . . . . . . 11 +∞ ∈ ℝ*
4342a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → +∞ ∈ ℝ*)
44 simpll 786 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
45 mnfle 11845 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
4645ad2antrr 758 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ ≤ 𝐴)
47 simpr 476 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
4840, 44, 41, 46, 47xrlelttrd 11867 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → -∞ < 𝐵)
49 pnfge 11840 . . . . . . . . . . 11 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
5041, 49syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ≤ +∞)
51 df-ico 12052 . . . . . . . . . . 11 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
52 xrlenlt 9982 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
53 xrltletr 11864 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐵𝐵 ≤ +∞) → 𝑤 < +∞))
54 xrltletr 11864 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐵𝐵𝑤) → -∞ < 𝑤))
5514, 51, 52, 14, 53, 54ixxun 12062 . . . . . . . . . 10 (((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐵𝐵 ≤ +∞)) → ((-∞(,)𝐵) ∪ (𝐵[,)+∞)) = (-∞(,)+∞))
5640, 41, 43, 48, 50, 55syl32anc 1326 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((-∞(,)𝐵) ∪ (𝐵[,)+∞)) = (-∞(,)+∞))
5739, 56syl5eq 2656 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = (-∞(,)+∞))
58 ioomax 12119 . . . . . . . 8 (-∞(,)+∞) = ℝ
5957, 58syl6eq 2660 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ)
60 ssun1 3738 . . . . . . . . 9 (𝐵[,)+∞) ⊆ ((𝐵[,)+∞) ∪ (-∞(,)𝐵))
6160, 59syl5sseq 3616 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ⊆ ℝ)
62 incom 3767 . . . . . . . . 9 ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ((-∞(,)𝐵) ∩ (𝐵[,)+∞))
6314, 51, 52ixxdisj 12061 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
6440, 41, 43, 63syl3anc 1318 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((-∞(,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
6562, 64syl5eq 2656 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ∅)
66 uneqdifeq 4009 . . . . . . . 8 (((𝐵[,)+∞) ⊆ ℝ ∧ ((𝐵[,)+∞) ∩ (-∞(,)𝐵)) = ∅) → (((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ ↔ (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵)))
6761, 65, 66syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (((𝐵[,)+∞) ∪ (-∞(,)𝐵)) = ℝ ↔ (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵)))
6859, 67mpbid 221 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (ℝ ∖ (𝐵[,)+∞)) = (-∞(,)𝐵))
69 rembl 23115 . . . . . . 7 ℝ ∈ dom vol
70 xrleloe 11853 . . . . . . . . . . 11 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
7141, 42, 70sylancl 693 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
7250, 71mpbid 221 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ ∨ 𝐵 = +∞))
73 xrre2 11875 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
7473expr 641 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
7542, 74mp3anl3 1412 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
7675orim1d 880 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵 < +∞ ∨ 𝐵 = +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)))
7772, 76mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
78 icombl1 23138 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ dom vol)
79 oveq1 6556 . . . . . . . . . . 11 (𝐵 = +∞ → (𝐵[,)+∞) = (+∞[,)+∞))
80 pnfge 11840 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → +∞ ≤ +∞)
8142, 80ax-mp 5 . . . . . . . . . . . 12 +∞ ≤ +∞
82 ico0 12092 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞))
8342, 42, 82mp2an 704 . . . . . . . . . . . 12 ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞)
8481, 83mpbir 220 . . . . . . . . . . 11 (+∞[,)+∞) = ∅
8579, 84syl6eq 2660 . . . . . . . . . 10 (𝐵 = +∞ → (𝐵[,)+∞) = ∅)
86 0mbl 23114 . . . . . . . . . 10 ∅ ∈ dom vol
8785, 86syl6eqel 2696 . . . . . . . . 9 (𝐵 = +∞ → (𝐵[,)+∞) ∈ dom vol)
8878, 87jaoi 393 . . . . . . . 8 ((𝐵 ∈ ℝ ∨ 𝐵 = +∞) → (𝐵[,)+∞) ∈ dom vol)
8977, 88syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ∈ dom vol)
90 difmbl 23118 . . . . . . 7 ((ℝ ∈ dom vol ∧ (𝐵[,)+∞) ∈ dom vol) → (ℝ ∖ (𝐵[,)+∞)) ∈ dom vol)
9169, 89, 90sylancr 694 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (ℝ ∖ (𝐵[,)+∞)) ∈ dom vol)
9268, 91eqeltrrd 2689 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞(,)𝐵) ∈ dom vol)
93 oveq1 6556 . . . . . 6 (-∞ = 𝐴 → (-∞(,)𝐵) = (𝐴(,)𝐵))
9493eleq1d 2672 . . . . 5 (-∞ = 𝐴 → ((-∞(,)𝐵) ∈ dom vol ↔ (𝐴(,)𝐵) ∈ dom vol))
9592, 94syl5ibcom 234 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ = 𝐴 → (𝐴(,)𝐵) ∈ dom vol))
96 xrleloe 11853 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
9722, 44, 96sylancr 694 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
9846, 97mpbid 221 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (-∞ < 𝐴 ∨ -∞ = 𝐴))
9938, 95, 98mpjaod 395 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
100 ioo0 12071 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
101 xrlenlt 9982 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
102101ancoms 468 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
103100, 102bitrd 267 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ ¬ 𝐴 < 𝐵))
104103biimpar 501 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,)𝐵) = ∅)
105104, 86syl6eqel 2696 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
10699, 105pm2.61dan 828 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ dom vol)
107 ndmioo 12073 . . 3 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
108107, 86syl6eqel 2696 . 2 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ dom vol)
109106, 108pm2.61i 175 1 (𝐴(,)𝐵) ∈ dom vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  (,)cioo 12046  [,)cico 12048  [,]cicc 12049  vol*covol 23038  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041
This theorem is referenced by:  iccmbl  23141  ovolioo  23143  ioovolcl  23144  uniioovol  23153  uniioombllem4  23160  uniioombllem5  23161  opnmblALT  23177  mbfid  23209  ditgcl  23428  ditgswap  23429  ditgsplitlem  23430  ftc1lem1  23602  ftc1lem2  23603  ftc1a  23604  ftc1lem4  23606  ftc2  23611  ftc2ditglem  23612  itgsubstlem  23615  itg2gt0cn  32635  ftc1cnnclem  32653  ftc1anclem7  32661  ftc1anclem8  32662  ftc1anc  32663  ftc2nc  32664  areacirc  32675  iocmbl  36817  cnioobibld  36818  itgpowd  36819  lhe4.4ex1a  37550  volioo  38840  itgsin0pilem1  38841  iblioosinexp  38844  itgsinexplem1  38845  itgsinexp  38846  itgcoscmulx  38861  volioc  38864  itgsincmulx  38866  iblcncfioo  38870  itgiccshift  38872  itgperiod  38873  itgsbtaddcnst  38874  volico  38876  volioof  38880  wallispilem2  38959  dirkeritg  38995  fourierdlem16  39016  fourierdlem21  39021  fourierdlem22  39022  fourierdlem39  39039  fourierdlem73  39072  fourierdlem83  39082  fourierdlem103  39102  fourierdlem104  39103  fourierdlem111  39110  fourierdlem112  39111  sqwvfoura  39121  sqwvfourb  39122  etransclem18  39145  etransclem23  39150  ovolval4lem1  39539  ovolval5lem1  39542
  Copyright terms: Public domain W3C validator