MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem4 Structured version   Unicode version

Theorem ftc1lem4 22191
Description: Lemma for ftc1 22194. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L^1 )
ftc1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
ftc1.f  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
ftc1.j  |-  J  =  ( Lt  RR )
ftc1.k  |-  K  =  ( Lt  D )
ftc1.l  |-  L  =  ( TopOpen ` fld )
ftc1.h  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
ftc1.e  |-  ( ph  ->  E  e.  RR+ )
ftc1.r  |-  ( ph  ->  R  e.  RR+ )
ftc1.fc  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
ftc1.x1  |-  ( ph  ->  X  e.  ( A [,] B ) )
ftc1.x2  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
ftc1.y1  |-  ( ph  ->  Y  e.  ( A [,] B ) )
ftc1.y2  |-  ( ph  ->  ( abs `  ( Y  -  C )
)  <  R )
Assertion
Ref Expression
ftc1lem4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  C )
) )  <  E
)
Distinct variable groups:    x, t,
y, z, C    t, D, x, y, z    y, G, z    t, A, x, y, z    t, B, x, y, z    t, X, x, z    t, E, y    y, H    ph, t, x, y, z    t, Y, x    t, F, x, y, z    x, L, y, z    y, R
Allowed substitution hints:    R( x, z, t)    E( x, z)    G( x, t)    H( x, z, t)    J( x, y, z, t)    K( x, y, z, t)    L( t)    X( y)    Y( y, z)

Proof of Theorem ftc1lem4
StepHypRef Expression
1 ftc1.a . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  RR )
2 ftc1.b . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR )
3 iccssre 11605 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A [,] B
)  C_  RR )
5 ftc1.x1 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  ( A [,] B ) )
64, 5sseldd 3505 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  RR )
7 ftc1.y1 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  ( A [,] B ) )
84, 7sseldd 3505 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR )
9 ltle 9672 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X  <  Y  ->  X  <_  Y )
)
106, 8, 9syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( X  <  Y  ->  X  <_  Y )
)
1110imp 429 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  Y )  ->  X  <_  Y )
12 ftc1.g . . . . . . . . . . 11  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
13 ftc1.le . . . . . . . . . . 11  |-  ( ph  ->  A  <_  B )
14 ftc1.s . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  D )
15 ftc1.d . . . . . . . . . . 11  |-  ( ph  ->  D  C_  RR )
16 ftc1.i . . . . . . . . . . 11  |-  ( ph  ->  F  e.  L^1 )
17 ftc1.c . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ( A (,) B ) )
18 ftc1.f . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
19 ftc1.j . . . . . . . . . . . 12  |-  J  =  ( Lt  RR )
20 ftc1.k . . . . . . . . . . . 12  |-  K  =  ( Lt  D )
21 ftc1.l . . . . . . . . . . . 12  |-  L  =  ( TopOpen ` fld )
2212, 1, 2, 13, 14, 15, 16, 17, 18, 19, 20, 21ftc1lem3 22190 . . . . . . . . . . 11  |-  ( ph  ->  F : D --> CC )
2312, 1, 2, 13, 14, 15, 16, 22, 5, 7ftc1lem1 22187 . . . . . . . . . 10  |-  ( (
ph  /\  X  <_  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  S. ( X (,) Y ) ( F `
 t )  _d t )
2411, 23syldan 470 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  S. ( X (,) Y ) ( F `
 t )  _d t )
251rexrd 9642 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  RR* )
26 elicc2 11588 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
271, 2, 26syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
285, 27mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) )
2928simp2d 1009 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  <_  X )
30 iooss1 11563 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR*  /\  A  <_  X )  ->  ( X (,) Y )  C_  ( A (,) Y ) )
3125, 29, 30syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( X (,) Y
)  C_  ( A (,) Y ) )
322rexrd 9642 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  B  e.  RR* )
33 elicc2 11588 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Y  e.  ( A [,] B )  <-> 
( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) ) )
341, 2, 33syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( Y  e.  ( A [,] B )  <-> 
( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) ) )
357, 34mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) )
3635simp3d 1010 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Y  <_  B )
37 iooss2 11564 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  RR*  /\  Y  <_  B )  ->  ( A (,) Y )  C_  ( A (,) B ) )
3832, 36, 37syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A (,) Y
)  C_  ( A (,) B ) )
3931, 38sstrd 3514 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X (,) Y
)  C_  ( A (,) B ) )
4039, 14sstrd 3514 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X (,) Y
)  C_  D )
4140sselda 3504 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  e.  D )
4222ffvelrnda 6020 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  D )  ->  ( F `  t )  e.  CC )
4341, 42syldan 470 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( F `  t )  e.  CC )
4414, 17sseldd 3505 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  D )
4522, 44ffvelrnd 6021 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  C
)  e.  CC )
4645adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( F `  C )  e.  CC )
4743, 46npcand 9933 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( (
( F `  t
)  -  ( F `
 C ) )  +  ( F `  C ) )  =  ( F `  t
) )
4847itgeq2dv 21939 . . . . . . . . . . 11  |-  ( ph  ->  S. ( X (,) Y ) ( ( ( F `  t
)  -  ( F `
 C ) )  +  ( F `  C ) )  _d t  =  S. ( X (,) Y ) ( F `  t
)  _d t )
4943, 46subcld 9929 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( F `  t )  -  ( F `  C ) )  e.  CC )
50 ioombl 21726 . . . . . . . . . . . . . . 15  |-  ( X (,) Y )  e. 
dom  vol
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X (,) Y
)  e.  dom  vol )
52 fvex 5875 . . . . . . . . . . . . . . 15  |-  ( F `
 t )  e. 
_V
5352a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  D )  ->  ( F `  t )  e.  _V )
5422feqmptd 5919 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  =  ( t  e.  D  |->  ( F `
 t ) ) )
5554, 16eqeltrrd 2556 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( t  e.  D  |->  ( F `  t
) )  e.  L^1 )
5640, 51, 53, 55iblss 21962 . . . . . . . . . . . . 13  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( F `  t
) )  e.  L^1 )
57 fconstmpt 5042 . . . . . . . . . . . . . 14  |-  ( ( X (,) Y )  X.  { ( F `
 C ) } )  =  ( t  e.  ( X (,) Y )  |->  ( F `
 C ) )
58 mblvol 21692 . . . . . . . . . . . . . . . . 17  |-  ( ( X (,) Y )  e.  dom  vol  ->  ( vol `  ( X (,) Y ) )  =  ( vol* `  ( X (,) Y
) ) )
5950, 58ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( X (,) Y
) )  =  ( vol* `  ( X (,) Y ) )
60 ioossicc 11609 . . . . . . . . . . . . . . . . . 18  |-  ( X (,) Y )  C_  ( X [,] Y )
6160a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( X (,) Y
)  C_  ( X [,] Y ) )
62 iccmbl 21727 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  e.  dom  vol )
636, 8, 62syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X [,] Y
)  e.  dom  vol )
64 mblss 21693 . . . . . . . . . . . . . . . . . 18  |-  ( ( X [,] Y )  e.  dom  vol  ->  ( X [,] Y ) 
C_  RR )
6563, 64syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
66 mblvol 21692 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X [,] Y )  e.  dom  vol  ->  ( vol `  ( X [,] Y ) )  =  ( vol* `  ( X [,] Y
) ) )
6763, 66syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( vol `  ( X [,] Y ) )  =  ( vol* `  ( X [,] Y
) ) )
68 iccvolcl 21728 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( vol `  ( X [,] Y ) )  e.  RR )
696, 8, 68syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( vol `  ( X [,] Y ) )  e.  RR )
7067, 69eqeltrrd 2556 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( vol* `  ( X [,] Y ) )  e.  RR )
71 ovolsscl 21648 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X (,) Y
)  C_  ( X [,] Y )  /\  ( X [,] Y )  C_  RR  /\  ( vol* `  ( X [,] Y
) )  e.  RR )  ->  ( vol* `  ( X (,) Y
) )  e.  RR )
7261, 65, 70, 71syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( vol* `  ( X (,) Y ) )  e.  RR )
7359, 72syl5eqel 2559 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( vol `  ( X (,) Y ) )  e.  RR )
74 iblconst 21975 . . . . . . . . . . . . . . 15  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  ( F `  C )  e.  CC )  ->  (
( X (,) Y
)  X.  { ( F `  C ) } )  e.  L^1 )
7551, 73, 45, 74syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X (,) Y )  X.  {
( F `  C
) } )  e.  L^1 )
7657, 75syl5eqelr 2560 . . . . . . . . . . . . 13  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( F `  C
) )  e.  L^1 )
7743, 56, 46, 76iblsub 21979 . . . . . . . . . . . 12  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( F `  t )  -  ( F `  C )
) )  e.  L^1 )
7849, 77, 46, 76itgadd 21982 . . . . . . . . . . 11  |-  ( ph  ->  S. ( X (,) Y ) ( ( ( F `  t
)  -  ( F `
 C ) )  +  ( F `  C ) )  _d t  =  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  +  S. ( X (,) Y ) ( F `
 C )  _d t ) )
7948, 78eqtr3d 2510 . . . . . . . . . 10  |-  ( ph  ->  S. ( X (,) Y ) ( F `
 t )  _d t  =  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  +  S. ( X (,) Y ) ( F `
 C )  _d t ) )
8079adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  t )  _d t  =  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  +  S. ( X (,) Y ) ( F `  C
)  _d t ) )
81 itgconst 21976 . . . . . . . . . . . . 13  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  ( F `  C )  e.  CC )  ->  S. ( X (,) Y ) ( F `  C
)  _d t  =  ( ( F `  C )  x.  ( vol `  ( X (,) Y ) ) ) )
8251, 73, 45, 81syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  S. ( X (,) Y ) ( F `
 C )  _d t  =  ( ( F `  C )  x.  ( vol `  ( X (,) Y ) ) ) )
8382adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  C )  _d t  =  ( ( F `  C
)  x.  ( vol `  ( X (,) Y
) ) ) )
846adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  <  Y )  ->  X  e.  RR )
858adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  <  Y )  ->  Y  e.  RR )
86 ovolioo 21729 . . . . . . . . . . . . . 14  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  X  <_  Y )  ->  ( vol* `  ( X (,) Y ) )  =  ( Y  -  X ) )
8784, 85, 11, 86syl3anc 1228 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  <  Y )  ->  ( vol* `  ( X (,) Y ) )  =  ( Y  -  X
) )
8859, 87syl5eq 2520 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  <  Y )  ->  ( vol `  ( X (,) Y
) )  =  ( Y  -  X ) )
8988oveq2d 6299 . . . . . . . . . . 11  |-  ( (
ph  /\  X  <  Y )  ->  ( ( F `  C )  x.  ( vol `  ( X (,) Y ) ) )  =  ( ( F `  C )  x.  ( Y  -  X ) ) )
9083, 89eqtrd 2508 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  C )  _d t  =  ( ( F `  C
)  x.  ( Y  -  X ) ) )
9190oveq2d 6299 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t  +  S. ( X (,) Y ) ( F `
 C )  _d t )  =  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  +  ( ( F `  C )  x.  ( Y  -  X ) ) ) )
9224, 80, 913eqtrd 2512 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  +  ( ( F `  C
)  x.  ( Y  -  X ) ) ) )
9392oveq1d 6298 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( G `  Y
)  -  ( G `
 X ) )  /  ( Y  -  X ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t  +  ( ( F `  C )  x.  ( Y  -  X )
) )  /  ( Y  -  X )
) )
94 ovex 6308 . . . . . . . . . . 11  |-  ( ( F `  t )  -  ( F `  C ) )  e. 
_V
9594a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( F `  t )  -  ( F `  C ) )  e. 
_V )
9695, 77itgcl 21941 . . . . . . . . 9  |-  ( ph  ->  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  e.  CC )
9796adantr 465 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  e.  CC )
9845adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( F `  C )  e.  CC )
998, 6resubcld 9986 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  -  X
)  e.  RR )
10099adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  e.  RR )
101100recnd 9621 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  e.  CC )
10298, 101mulcld 9615 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( ( F `  C )  x.  ( Y  -  X
) )  e.  CC )
1036, 8posdifd 10138 . . . . . . . . . 10  |-  ( ph  ->  ( X  <  Y  <->  0  <  ( Y  -  X ) ) )
104103biimpa 484 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  0  <  ( Y  -  X ) )
105104gt0ne0d 10116 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  =/=  0
)
10697, 102, 101, 105divdird 10357 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  +  ( ( F `  C )  x.  ( Y  -  X )
) )  /  ( Y  -  X )
)  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  /  ( Y  -  X ) )  +  ( ( ( F `  C )  x.  ( Y  -  X ) )  / 
( Y  -  X
) ) ) )
10798, 101, 105divcan4d 10325 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( F `  C
)  x.  ( Y  -  X ) )  /  ( Y  -  X ) )  =  ( F `  C
) )
108107oveq2d 6299 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  / 
( Y  -  X
) )  +  ( ( ( F `  C )  x.  ( Y  -  X )
)  /  ( Y  -  X ) ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  /  ( Y  -  X ) )  +  ( F `  C ) ) )
10993, 106, 1083eqtrd 2512 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( G `  Y
)  -  ( G `
 X ) )  /  ( Y  -  X ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t  / 
( Y  -  X
) )  +  ( F `  C ) ) )
110109oveq1d 6298 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( ( G `  Y )  -  ( G `  X )
)  /  ( Y  -  X ) )  -  ( F `  C ) )  =  ( ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  / 
( Y  -  X
) )  +  ( F `  C ) )  -  ( F `
 C ) ) )
11197, 101, 105divcld 10319 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t  / 
( Y  -  X
) )  e.  CC )
112111, 98pncand 9930 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  /  ( Y  -  X )
)  +  ( F `
 C ) )  -  ( F `  C ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  /  ( Y  -  X )
) )
113110, 112eqtrd 2508 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( ( G `  Y )  -  ( G `  X )
)  /  ( Y  -  X ) )  -  ( F `  C ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  /  ( Y  -  X )
) )
114113fveq2d 5869 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  C )
) )  =  ( abs `  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  / 
( Y  -  X
) ) ) )
11597, 101, 105absdivd 13248 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  /  ( Y  -  X )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  /  ( abs `  ( Y  -  X )
) ) )
116 0re 9595 . . . . . . 7  |-  0  e.  RR
117 ltle 9672 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( Y  -  X
)  e.  RR )  ->  ( 0  < 
( Y  -  X
)  ->  0  <_  ( Y  -  X ) ) )
118116, 100, 117sylancr 663 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( 0  <  ( Y  -  X )  ->  0  <_  ( Y  -  X
) ) )
119104, 118mpd 15 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  0  <_  ( Y  -  X ) )
120100, 119absidd 13216 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( Y  -  X
) )  =  ( Y  -  X ) )
121120oveq2d 6299 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( ( abs `  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t )  / 
( abs `  ( Y  -  X )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  /  ( Y  -  X ) ) )
122114, 115, 1213eqtrd 2512 . 2  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  C )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  /  ( Y  -  X ) ) )
12396abscld 13229 . . . . 5  |-  ( ph  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  e.  RR )
124123adantr 465 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  e.  RR )
12549abscld 13229 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( ( F `  t )  -  ( F `  C )
) )  e.  RR )
12695, 77iblabs 21986 . . . . . 6  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) ) )  e.  L^1 )
127125, 126itgrecl 21955 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C )
) )  _d t  e.  RR )
128127adantr 465 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t  e.  RR )
129 ftc1.e . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
130129rpred 11255 . . . . . 6  |-  ( ph  ->  E  e.  RR )
13199, 130remulcld 9623 . . . . 5  |-  ( ph  ->  ( ( Y  -  X )  x.  E
)  e.  RR )
132131adantr 465 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( ( Y  -  X )  x.  E )  e.  RR )
13349, 77itgabs 21992 . . . . 5  |-  ( ph  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  <_  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t )
134133adantr 465 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  <_  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t )
135104, 88breqtrrd 4473 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  0  <  ( vol `  ( X (,) Y ) ) )
136130adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  E  e.  RR )
137 fconstmpt 5042 . . . . . . . . . 10  |-  ( ( X (,) Y )  X.  { E }
)  =  ( t  e.  ( X (,) Y )  |->  E )
138130recnd 9621 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  CC )
139 iblconst 21975 . . . . . . . . . . 11  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  E  e.  CC )  ->  (
( X (,) Y
)  X.  { E } )  e.  L^1 )
14051, 73, 138, 139syl3anc 1228 . . . . . . . . . 10  |-  ( ph  ->  ( ( X (,) Y )  X.  { E } )  e.  L^1 )
141137, 140syl5eqelr 2560 . . . . . . . . 9  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  E )  e.  L^1 )
142136, 141, 125, 126iblsub 21979 . . . . . . . 8  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( E  -  ( abs `  ( ( F `
 t )  -  ( F `  C ) ) ) ) )  e.  L^1 )
143142adantr 465 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( t  e.  ( X (,) Y
)  |->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C ) ) ) ) )  e.  L^1 )
144 ftc1.fc . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
145144ralrimiva 2878 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
146145adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  A. y  e.  D  ( ( abs `  ( y  -  C ) )  < 
R  ->  ( abs `  ( ( F `  y )  -  ( F `  C )
) )  <  E
) )
14715, 44sseldd 3505 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  RR )
148 ftc1.r . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  RR+ )
149148rpred 11255 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  RR )
150147, 149resubcld 9986 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  -  R
)  e.  RR )
151150adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( C  -  R )  e.  RR )
1526adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  X  e.  RR )
15340, 15sstrd 3514 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X (,) Y
)  C_  RR )
154153sselda 3504 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  e.  RR )
155 ftc1.x2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
1566, 147, 149absdifltd 13227 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( X  -  C )
)  <  R  <->  ( ( C  -  R )  <  X  /\  X  < 
( C  +  R
) ) ) )
157155, 156mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  -  R )  <  X  /\  X  <  ( C  +  R ) ) )
158157simpld 459 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  -  R
)  <  X )
159158adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( C  -  R )  <  X
)
160 eliooord 11583 . . . . . . . . . . . . . 14  |-  ( t  e.  ( X (,) Y )  ->  ( X  <  t  /\  t  <  Y ) )
161160adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( X  <  t  /\  t  < 
Y ) )
162161simpld 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  X  <  t )
163151, 152, 154, 159, 162lttrd 9741 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( C  -  R )  <  t
)
1648adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  Y  e.  RR )
165147, 149readdcld 9622 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  +  R
)  e.  RR )
166165adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( C  +  R )  e.  RR )
167161simprd 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  <  Y )
168 ftc1.y2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( abs `  ( Y  -  C )
)  <  R )
1698, 147, 149absdifltd 13227 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( Y  -  C )
)  <  R  <->  ( ( C  -  R )  <  Y  /\  Y  < 
( C  +  R
) ) ) )
170168, 169mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  -  R )  <  Y  /\  Y  <  ( C  +  R ) ) )
171170simprd 463 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  <  ( C  +  R ) )
172171adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  Y  <  ( C  +  R ) )
173154, 164, 166, 167, 172lttrd 9741 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  <  ( C  +  R ) )
174147adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  C  e.  RR )
175149adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  R  e.  RR )
176154, 174, 175absdifltd 13227 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( abs `  ( t  -  C ) )  < 
R  <->  ( ( C  -  R )  < 
t  /\  t  <  ( C  +  R ) ) ) )
177163, 173, 176mpbir2and 920 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( t  -  C
) )  <  R
)
178 oveq1 6290 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  (
y  -  C )  =  ( t  -  C ) )
179178fveq2d 5869 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  ( abs `  ( y  -  C ) )  =  ( abs `  (
t  -  C ) ) )
180179breq1d 4457 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( abs `  (
y  -  C ) )  <  R  <->  ( abs `  ( t  -  C
) )  <  R
) )
181 fveq2 5865 . . . . . . . . . . . . . . 15  |-  ( y  =  t  ->  ( F `  y )  =  ( F `  t ) )
182181oveq1d 6298 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  (
( F `  y
)  -  ( F `
 C ) )  =  ( ( F `
 t )  -  ( F `  C ) ) )
183182fveq2d 5869 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  ( abs `  ( ( F `
 y )  -  ( F `  C ) ) )  =  ( abs `  ( ( F `  t )  -  ( F `  C ) ) ) )
184183breq1d 4457 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E  <->  ( abs `  ( ( F `  t )  -  ( F `  C )
) )  <  E
) )
185180, 184imbi12d 320 . . . . . . . . . . 11  |-  ( y  =  t  ->  (
( ( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E )  <-> 
( ( abs `  (
t  -  C ) )  <  R  -> 
( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  <  E ) ) )
186185rspcv 3210 . . . . . . . . . 10  |-  ( t  e.  D  ->  ( A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E )  ->  ( ( abs `  ( t  -  C
) )  <  R  ->  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  <  E ) ) )
18741, 146, 177, 186syl3c 61 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( ( F `  t )  -  ( F `  C )
) )  <  E
)
188 difrp 11252 . . . . . . . . . 10  |-  ( ( ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  <  E  <->  ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) ) )  e.  RR+ ) )
189125, 136, 188syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( abs `  ( ( F `
 t )  -  ( F `  C ) ) )  <  E  <->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C )
) ) )  e.  RR+ ) )
190187, 189mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) ) )  e.  RR+ )
191190adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  X  <  Y )  /\  t  e.  ( X (,) Y
) )  ->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C )
) ) )  e.  RR+ )
192135, 143, 191itggt0 21999 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  0  <  S. ( X (,) Y
) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C ) ) ) )  _d t )
193136, 141, 125, 126itgsub 21983 . . . . . . . 8  |-  ( ph  ->  S. ( X (,) Y ) ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) ) )  _d t  =  ( S. ( X (,) Y ) E  _d t  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t ) )
194193adantr 465 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C )
) ) )  _d t  =  ( S. ( X (,) Y
) E  _d t  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t ) )
195 itgconst 21976 . . . . . . . . . . 11  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  E  e.  CC )  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y ) ) ) )
19651, 73, 138, 195syl3anc 1228 . . . . . . . . . 10  |-  ( ph  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y ) ) ) )
197196adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y
) ) ) )
19888oveq2d 6299 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( E  x.  ( vol `  ( X (,) Y ) ) )  =  ( E  x.  ( Y  -  X ) ) )
19999recnd 9621 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  -  X
)  e.  CC )
200138, 199mulcomd 9616 . . . . . . . . . 10  |-  ( ph  ->  ( E  x.  ( Y  -  X )
)  =  ( ( Y  -  X )  x.  E ) )
201200adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( E  x.  ( Y  -  X
) )  =  ( ( Y  -  X
)  x.  E ) )
202197, 198, 2013eqtrd 2512 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) E  _d t  =  ( ( Y  -  X
)  x.  E ) )
203202oveq1d 6298 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) E  _d t  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t )  =  ( ( ( Y  -  X )  x.  E )  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t ) )
204194, 203eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C )
) ) )  _d t  =  ( ( ( Y  -  X
)  x.  E )  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t ) )
205192, 204breqtrd 4471 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  0  <  ( ( ( Y  -  X )  x.  E
)  -  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t ) )
206127, 131posdifd 10138 . . . . . 6  |-  ( ph  ->  ( S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t  <  (
( Y  -  X
)  x.  E )  <->  0  <  ( ( ( Y  -  X
)  x.  E )  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t ) ) )
207206biimpar 485 . . . . 5  |-  ( (
ph  /\  0  <  ( ( ( Y  -  X )  x.  E
)  -  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t ) )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t  <  (
( Y  -  X
)  x.  E ) )
208205, 207syldan 470 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t  <  (
( Y  -  X
)  x.  E ) )
209124, 128, 132, 134, 208lelttrd 9738 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  <  (
( Y  -  X
)  x.  E ) )
21097abscld 13229 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  e.  RR )
211130adantr 465 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  E  e.  RR )
212 ltdivmul 10416 . . . 4  |-  ( ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  e.  RR  /\  E  e.  RR  /\  ( ( Y  -  X )  e.  RR  /\  0  <  ( Y  -  X
) ) )  -> 
( ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  /  ( Y  -  X )
)  <  E  <->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  <  (
( Y  -  X
)  x.  E ) ) )
213210, 211, 100, 104, 212syl112anc 1232 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  /  ( Y  -  X ) )  < 
E  <->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  <  ( ( Y  -  X )  x.  E ) ) )
214209, 213mpbird 232 . 2  |-  ( (
ph  /\  X  <  Y )  ->  ( ( abs `  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t )  / 
( Y  -  X
) )  <  E
)
215122, 214eqbrtrd 4467 1  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  C )
) )  <  E
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    \ cdif 3473    C_ wss 3476   {csn 4027   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   dom cdm 4999   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491    + caddc 9494    x. cmul 9496   RR*cxr 9626    < clt 9627    <_ cle 9628    - cmin 9804    / cdiv 10205   RR+crp 11219   (,)cioo 11528   [,]cicc 11531   abscabs 13029   ↾t crest 14675   TopOpenctopn 14676  ℂfldccnfld 18207    CnP ccnp 19508   vol*covol 21625   volcvol 21626   L^1cibl 21777   S.citg 21778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cc 8814  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-ofr 6524  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-acn 8322  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-clim 13273  df-rlim 13274  df-sum 13471  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cn 19510  df-cnp 19511  df-cmp 19669  df-tx 19814  df-hmeo 20007  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-ovol 21627  df-vol 21628  df-mbf 21779  df-itg1 21780  df-itg2 21781  df-ibl 21782  df-itg 21783  df-0p 21828
This theorem is referenced by:  ftc1lem5  22192
  Copyright terms: Public domain W3C validator