Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpt Structured version   Visualization version   GIF version

Theorem cbvmpt 4677
 Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
cbvmpt.1 𝑦𝐵
cbvmpt.2 𝑥𝐶
cbvmpt.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmpt (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvmpt
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . 4 𝑤(𝑥𝐴𝑧 = 𝐵)
2 nfv 1830 . . . . 5 𝑥 𝑤𝐴
3 nfs1v 2425 . . . . 5 𝑥[𝑤 / 𝑥]𝑧 = 𝐵
42, 3nfan 1816 . . . 4 𝑥(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
5 eleq1 2676 . . . . 5 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
6 sbequ12 2097 . . . . 5 (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵))
75, 6anbi12d 743 . . . 4 (𝑥 = 𝑤 → ((𝑥𝐴𝑧 = 𝐵) ↔ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)))
81, 4, 7cbvopab1 4655 . . 3 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)}
9 nfv 1830 . . . . 5 𝑦 𝑤𝐴
10 cbvmpt.1 . . . . . . 7 𝑦𝐵
1110nfeq2 2766 . . . . . 6 𝑦 𝑧 = 𝐵
1211nfsb 2428 . . . . 5 𝑦[𝑤 / 𝑥]𝑧 = 𝐵
139, 12nfan 1816 . . . 4 𝑦(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
14 nfv 1830 . . . 4 𝑤(𝑦𝐴𝑧 = 𝐶)
15 eleq1 2676 . . . . 5 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
16 sbequ 2364 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵))
17 cbvmpt.2 . . . . . . . 8 𝑥𝐶
1817nfeq2 2766 . . . . . . 7 𝑥 𝑧 = 𝐶
19 cbvmpt.3 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝐶)
2019eqeq2d 2620 . . . . . . 7 (𝑥 = 𝑦 → (𝑧 = 𝐵𝑧 = 𝐶))
2118, 20sbie 2396 . . . . . 6 ([𝑦 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶)
2216, 21syl6bb 275 . . . . 5 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶))
2315, 22anbi12d 743 . . . 4 (𝑤 = 𝑦 → ((𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦𝐴𝑧 = 𝐶)))
2413, 14, 23cbvopab1 4655 . . 3 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
258, 24eqtri 2632 . 2 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
26 df-mpt 4645 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
27 df-mpt 4645 . 2 (𝑦𝐴𝐶) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
2825, 26, 273eqtr4i 2642 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  [wsb 1867   ∈ wcel 1977  Ⅎwnfc 2738  {copab 4642   ↦ cmpt 4643 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-mpt 4645 This theorem is referenced by:  cbvmptv  4678  dffn5f  6162  fvmpts  6194  fvmpt2i  6199  fvmptex  6203  fmptcof  6304  fmptcos  6305  fliftfuns  6464  offval2  6812  ofmpteq  6814  mpt2curryvald  7283  qliftfuns  7721  axcc2  9142  ac6num  9184  seqof2  12721  summolem2a  14293  zsum  14296  fsumcvg2  14305  fsumrlim  14384  cbvprod  14484  prodmolem2a  14503  zprod  14506  fprod  14510  pcmptdvds  15436  prdsdsval2  15967  gsumconstf  18158  gsummpt1n0  18187  gsum2d2  18196  dprd2d2  18266  gsumdixp  18432  psrass1lem  19198  coe1fzgsumdlem  19492  gsumply1eq  19496  evl1gsumdlem  19541  madugsum  20268  cnmpt1t  21278  cnmpt2k  21301  elmptrab  21440  flfcnp2  21621  prdsxmet  21984  fsumcn  22481  ovoliunlem3  23079  ovoliun  23080  ovoliun2  23081  voliun  23129  mbfpos  23224  mbfposb  23226  i1fposd  23280  itg2cnlem1  23334  isibl2  23339  cbvitg  23348  itgss3  23387  itgfsum  23399  itgabs  23407  itgcn  23415  limcmpt  23453  dvmptfsum  23542  lhop2  23582  dvfsumle  23588  dvfsumlem2  23594  itgsubstlem  23615  itgsubst  23616  itgulm2  23967  rlimcnp2  24493  gsummpt2co  29111  esumsnf  29453  mbfposadd  32627  itgabsnc  32649  ftc1cnnclem  32653  ftc2nc  32664  mzpsubst  36329  rabdiophlem2  36384  aomclem8  36649  fsumcnf  38203  disjf1  38364  disjrnmpt2  38370  disjinfi  38375  cncfmptss  38654  mulc1cncfg  38656  expcnfg  38658  fprodcn  38667  fnlimabslt  38746  icccncfext  38773  cncficcgt0  38774  cncfiooicclem1  38779  fprodcncf  38787  dvmptmulf  38827  iblsplitf  38862  stoweidlem21  38914  stirlinglem4  38970  stirlinglem13  38979  stirlinglem15  38981  fourierd  39115  fourierclimd  39116  sge0iunmptlemre  39308  sge0iunmpt  39311  sge0ltfirpmpt2  39319  sge0isummpt2  39325  sge0xaddlem2  39327  sge0xadd  39328  meadjiun  39359  omeiunle  39407  caratheodorylem2  39417  ovncvrrp  39454  vonioo  39573
 Copyright terms: Public domain W3C validator