MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumply1eq Structured version   Visualization version   GIF version

Theorem gsumply1eq 19496
Description: Two univariate polynomials given as (finitely supported) sum of scaled monomials are equal iff the corresponding coefficients are equal. (Contributed by AV, 21-Nov-2019.)
Hypotheses
Ref Expression
gsumply1eq.p 𝑃 = (Poly1𝑅)
gsumply1eq.x 𝑋 = (var1𝑅)
gsumply1eq.e = (.g‘(mulGrp‘𝑃))
gsumply1eq.r (𝜑𝑅 ∈ Ring)
gsumply1eq.k 𝐾 = (Base‘𝑅)
gsumply1eq.m = ( ·𝑠𝑃)
gsumply1eq.0 0 = (0g𝑅)
gsumply1eq.a (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
gsumply1eq.f1 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
gsumply1eq.b (𝜑 → ∀𝑘 ∈ ℕ0 𝐵𝐾)
gsumply1eq.f2 (𝜑 → (𝑘 ∈ ℕ0𝐵) finSupp 0 )
gsumply1eq.o (𝜑𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
gsumply1eq.q (𝜑𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
Assertion
Ref Expression
gsumply1eq (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑂   𝑃,𝑘   𝑄,𝑘   𝑅,𝑘   𝑘,𝑋   𝜑,𝑘   0 ,𝑘   ,𝑘   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem gsumply1eq
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 gsumply1eq.r . . 3 (𝜑𝑅 ∈ Ring)
2 gsumply1eq.o . . . 4 (𝜑𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
3 gsumply1eq.p . . . . 5 𝑃 = (Poly1𝑅)
4 eqid 2610 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
5 gsumply1eq.x . . . . 5 𝑋 = (var1𝑅)
6 gsumply1eq.e . . . . 5 = (.g‘(mulGrp‘𝑃))
7 gsumply1eq.k . . . . 5 𝐾 = (Base‘𝑅)
8 gsumply1eq.m . . . . 5 = ( ·𝑠𝑃)
9 gsumply1eq.0 . . . . 5 0 = (0g𝑅)
10 gsumply1eq.a . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
11 gsumply1eq.f1 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
123, 4, 5, 6, 1, 7, 8, 9, 10, 11gsumsmonply1 19494 . . . 4 (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) ∈ (Base‘𝑃))
132, 12eqeltrd 2688 . . 3 (𝜑𝑂 ∈ (Base‘𝑃))
14 gsumply1eq.q . . . 4 (𝜑𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
15 gsumply1eq.b . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐵𝐾)
16 gsumply1eq.f2 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐵) finSupp 0 )
173, 4, 5, 6, 1, 7, 8, 9, 15, 16gsumsmonply1 19494 . . . 4 (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))) ∈ (Base‘𝑃))
1814, 17eqeltrd 2688 . . 3 (𝜑𝑄 ∈ (Base‘𝑃))
19 eqid 2610 . . . . 5 (coe1𝑂) = (coe1𝑂)
20 eqid 2610 . . . . 5 (coe1𝑄) = (coe1𝑄)
213, 4, 19, 20ply1coe1eq 19489 . . . 4 ((𝑅 ∈ Ring ∧ 𝑂 ∈ (Base‘𝑃) ∧ 𝑄 ∈ (Base‘𝑃)) → (∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ 𝑂 = 𝑄))
2221bicomd 212 . . 3 ((𝑅 ∈ Ring ∧ 𝑂 ∈ (Base‘𝑃) ∧ 𝑄 ∈ (Base‘𝑃)) → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘)))
231, 13, 18, 22syl3anc 1318 . 2 (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘)))
242adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
25 nfcv 2751 . . . . . . . . . 10 𝑙(𝐴 (𝑘 𝑋))
26 nfcsb1v 3515 . . . . . . . . . . 11 𝑘𝑙 / 𝑘𝐴
27 nfcv 2751 . . . . . . . . . . 11 𝑘
28 nfcv 2751 . . . . . . . . . . 11 𝑘(𝑙 𝑋)
2926, 27, 28nfov 6575 . . . . . . . . . 10 𝑘(𝑙 / 𝑘𝐴 (𝑙 𝑋))
30 csbeq1a 3508 . . . . . . . . . . 11 (𝑘 = 𝑙𝐴 = 𝑙 / 𝑘𝐴)
31 oveq1 6556 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑘 𝑋) = (𝑙 𝑋))
3230, 31oveq12d 6567 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐴 (𝑘 𝑋)) = (𝑙 / 𝑘𝐴 (𝑙 𝑋)))
3325, 29, 32cbvmpt 4677 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))
3433oveq2i 6560 . . . . . . . 8 (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋))))
3524, 34syl6eq 2660 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑂 = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))
3635fveq2d 6107 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coe1𝑂) = (coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋))))))
3736fveq1d 6105 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) = ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘))
381adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
39 nfv 1830 . . . . . . . . . 10 𝑙 𝐴𝐾
4026nfel1 2765 . . . . . . . . . 10 𝑘𝑙 / 𝑘𝐴𝐾
4130eleq1d 2672 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐴𝐾𝑙 / 𝑘𝐴𝐾))
4239, 40, 41cbvral 3143 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 𝐴𝐾 ↔ ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
4310, 42sylib 207 . . . . . . . 8 (𝜑 → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
4443adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
45 nfcv 2751 . . . . . . . . . 10 𝑙𝐴
4645, 26, 30cbvmpt 4677 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐴) = (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴)
4746, 11syl5eqbrr 4619 . . . . . . . 8 (𝜑 → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴) finSupp 0 )
4847adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴) finSupp 0 )
49 simpr 476 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
503, 4, 5, 6, 38, 7, 8, 9, 44, 48, 49gsummoncoe1 19495 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘) = 𝑘 / 𝑙𝑙 / 𝑘𝐴)
51 csbco 3509 . . . . . . 7 𝑘 / 𝑙𝑙 / 𝑘𝐴 = 𝑘 / 𝑘𝐴
52 csbid 3507 . . . . . . 7 𝑘 / 𝑘𝐴 = 𝐴
5351, 52eqtri 2632 . . . . . 6 𝑘 / 𝑙𝑙 / 𝑘𝐴 = 𝐴
5450, 53syl6eq 2660 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘) = 𝐴)
5537, 54eqtrd 2644 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) = 𝐴)
5614adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
57 nfcv 2751 . . . . . . . . . . 11 𝑙(𝐵 (𝑘 𝑋))
58 nfcsb1v 3515 . . . . . . . . . . . 12 𝑘𝑙 / 𝑘𝐵
5958, 27, 28nfov 6575 . . . . . . . . . . 11 𝑘(𝑙 / 𝑘𝐵 (𝑙 𝑋))
60 csbeq1a 3508 . . . . . . . . . . . 12 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
6160, 31oveq12d 6567 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝐵 (𝑘 𝑋)) = (𝑙 / 𝑘𝐵 (𝑙 𝑋)))
6257, 59, 61cbvmpt 4677 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))
6362a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋))))
6463oveq2d 6565 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))
6556, 64eqtrd 2644 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑄 = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))
6665fveq2d 6107 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coe1𝑄) = (coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋))))))
6766fveq1d 6105 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑄)‘𝑘) = ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘))
68 nfv 1830 . . . . . . . . . 10 𝑙 𝐵𝐾
6958nfel1 2765 . . . . . . . . . 10 𝑘𝑙 / 𝑘𝐵𝐾
7060eleq1d 2672 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐵𝐾𝑙 / 𝑘𝐵𝐾))
7168, 69, 70cbvral 3143 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 𝐵𝐾 ↔ ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
7215, 71sylib 207 . . . . . . . 8 (𝜑 → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
7372adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
74 nfcv 2751 . . . . . . . . . 10 𝑙𝐵
7574, 58, 60cbvmpt 4677 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐵) = (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵)
7675, 16syl5eqbrr 4619 . . . . . . . 8 (𝜑 → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵) finSupp 0 )
7776adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵) finSupp 0 )
783, 4, 5, 6, 38, 7, 8, 9, 73, 77, 49gsummoncoe1 19495 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘) = 𝑘 / 𝑙𝑙 / 𝑘𝐵)
79 csbco 3509 . . . . . . 7 𝑘 / 𝑙𝑙 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
80 csbid 3507 . . . . . . 7 𝑘 / 𝑘𝐵 = 𝐵
8179, 80eqtri 2632 . . . . . 6 𝑘 / 𝑙𝑙 / 𝑘𝐵 = 𝐵
8278, 81syl6eq 2660 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘) = 𝐵)
8367, 82eqtrd 2644 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑄)‘𝑘) = 𝐵)
8455, 83eqeq12d 2625 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ 𝐴 = 𝐵))
8584ralbidva 2968 . 2 (𝜑 → (∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
8623, 85bitrd 267 1 (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  csb 3499   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549   finSupp cfsupp 8158  0cn0 11169  Basecbs 15695   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  .gcmg 17363  mulGrpcmgp 18312  Ringcrg 18370  var1cv1 19367  Poly1cpl1 19368  coe1cco1 19369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374
This theorem is referenced by:  chcoeffeqlem  20509
  Copyright terms: Public domain W3C validator