Step | Hyp | Ref
| Expression |
1 | | gsumply1eq.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | gsumply1eq.o |
. . . 4
⊢ (𝜑 → 𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0
↦ (𝐴 ∗ (𝑘 ↑ 𝑋))))) |
3 | | gsumply1eq.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
4 | | eqid 2610 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
5 | | gsumply1eq.x |
. . . . 5
⊢ 𝑋 = (var1‘𝑅) |
6 | | gsumply1eq.e |
. . . . 5
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
7 | | gsumply1eq.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑅) |
8 | | gsumply1eq.m |
. . . . 5
⊢ ∗ = (
·𝑠 ‘𝑃) |
9 | | gsumply1eq.0 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
10 | | gsumply1eq.a |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) |
11 | | gsumply1eq.f1 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) |
12 | 3, 4, 5, 6, 1, 7, 8, 9, 10, 11 | gsumsmonply1 19494 |
. . . 4
⊢ (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0
↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))) ∈ (Base‘𝑃)) |
13 | 2, 12 | eqeltrd 2688 |
. . 3
⊢ (𝜑 → 𝑂 ∈ (Base‘𝑃)) |
14 | | gsumply1eq.q |
. . . 4
⊢ (𝜑 → 𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0
↦ (𝐵 ∗ (𝑘 ↑ 𝑋))))) |
15 | | gsumply1eq.b |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐵 ∈ 𝐾) |
16 | | gsumply1eq.f2 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐵) finSupp 0 ) |
17 | 3, 4, 5, 6, 1, 7, 8, 9, 15, 16 | gsumsmonply1 19494 |
. . . 4
⊢ (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0
↦ (𝐵 ∗ (𝑘 ↑ 𝑋)))) ∈ (Base‘𝑃)) |
18 | 14, 17 | eqeltrd 2688 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (Base‘𝑃)) |
19 | | eqid 2610 |
. . . . 5
⊢
(coe1‘𝑂) = (coe1‘𝑂) |
20 | | eqid 2610 |
. . . . 5
⊢
(coe1‘𝑄) = (coe1‘𝑄) |
21 | 3, 4, 19, 20 | ply1coe1eq 19489 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑂 ∈ (Base‘𝑃) ∧ 𝑄 ∈ (Base‘𝑃)) → (∀𝑘 ∈ ℕ0
((coe1‘𝑂)‘𝑘) = ((coe1‘𝑄)‘𝑘) ↔ 𝑂 = 𝑄)) |
22 | 21 | bicomd 212 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑂 ∈ (Base‘𝑃) ∧ 𝑄 ∈ (Base‘𝑃)) → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0
((coe1‘𝑂)‘𝑘) = ((coe1‘𝑄)‘𝑘))) |
23 | 1, 13, 18, 22 | syl3anc 1318 |
. 2
⊢ (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0
((coe1‘𝑂)‘𝑘) = ((coe1‘𝑄)‘𝑘))) |
24 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0
↦ (𝐴 ∗ (𝑘 ↑ 𝑋))))) |
25 | | nfcv 2751 |
. . . . . . . . . 10
⊢
Ⅎ𝑙(𝐴 ∗ (𝑘 ↑ 𝑋)) |
26 | | nfcsb1v 3515 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐴 |
27 | | nfcv 2751 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘
∗ |
28 | | nfcv 2751 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑙 ↑ 𝑋) |
29 | 26, 27, 28 | nfov 6575 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(⦋𝑙 / 𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋)) |
30 | | csbeq1a 3508 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑙 → 𝐴 = ⦋𝑙 / 𝑘⦌𝐴) |
31 | | oveq1 6556 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑙 → (𝑘 ↑ 𝑋) = (𝑙 ↑ 𝑋)) |
32 | 30, 31 | oveq12d 6567 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑙 → (𝐴 ∗ (𝑘 ↑ 𝑋)) = (⦋𝑙 / 𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋))) |
33 | 25, 29, 32 | cbvmpt 4677 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ (𝐴 ∗ (𝑘 ↑ 𝑋))) = (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋))) |
34 | 33 | oveq2i 6560 |
. . . . . . . 8
⊢ (𝑃 Σg
(𝑘 ∈
ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))) = (𝑃 Σg (𝑙 ∈ ℕ0
↦ (⦋𝑙 /
𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋)))) |
35 | 24, 34 | syl6eq 2660 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑂 = (𝑃 Σg (𝑙 ∈ ℕ0
↦ (⦋𝑙 /
𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋))))) |
36 | 35 | fveq2d 6107 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(coe1‘𝑂) =
(coe1‘(𝑃
Σg (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋)))))) |
37 | 36 | fveq1d 6105 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑂)‘𝑘) = ((coe1‘(𝑃 Σg
(𝑙 ∈
ℕ0 ↦ (⦋𝑙 / 𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋)))))‘𝑘)) |
38 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) |
39 | | nfv 1830 |
. . . . . . . . . 10
⊢
Ⅎ𝑙 𝐴 ∈ 𝐾 |
40 | 26 | nfel1 2765 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐴 ∈ 𝐾 |
41 | 30 | eleq1d 2672 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑙 → (𝐴 ∈ 𝐾 ↔ ⦋𝑙 / 𝑘⦌𝐴 ∈ 𝐾)) |
42 | 39, 40, 41 | cbvral 3143 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
ℕ0 𝐴
∈ 𝐾 ↔
∀𝑙 ∈
ℕ0 ⦋𝑙 / 𝑘⦌𝐴 ∈ 𝐾) |
43 | 10, 42 | sylib 207 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑙 ∈ ℕ0
⦋𝑙 / 𝑘⦌𝐴 ∈ 𝐾) |
44 | 43 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
∀𝑙 ∈
ℕ0 ⦋𝑙 / 𝑘⦌𝐴 ∈ 𝐾) |
45 | | nfcv 2751 |
. . . . . . . . . 10
⊢
Ⅎ𝑙𝐴 |
46 | 45, 26, 30 | cbvmpt 4677 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ 𝐴) = (𝑙 ∈ ℕ0
↦ ⦋𝑙 /
𝑘⦌𝐴) |
47 | 46, 11 | syl5eqbrr 4619 |
. . . . . . . 8
⊢ (𝜑 → (𝑙 ∈ ℕ0 ↦
⦋𝑙 / 𝑘⦌𝐴) finSupp 0 ) |
48 | 47 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑙 ∈ ℕ0
↦ ⦋𝑙 /
𝑘⦌𝐴) finSupp 0 ) |
49 | | simpr 476 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
50 | 3, 4, 5, 6, 38, 7,
8, 9, 44, 48, 49 | gsummoncoe1 19495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑃
Σg (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋)))))‘𝑘) = ⦋𝑘 / 𝑙⦌⦋𝑙 / 𝑘⦌𝐴) |
51 | | csbco 3509 |
. . . . . . 7
⊢
⦋𝑘 /
𝑙⦌⦋𝑙 / 𝑘⦌𝐴 = ⦋𝑘 / 𝑘⦌𝐴 |
52 | | csbid 3507 |
. . . . . . 7
⊢
⦋𝑘 /
𝑘⦌𝐴 = 𝐴 |
53 | 51, 52 | eqtri 2632 |
. . . . . 6
⊢
⦋𝑘 /
𝑙⦌⦋𝑙 / 𝑘⦌𝐴 = 𝐴 |
54 | 50, 53 | syl6eq 2660 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑃
Σg (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐴 ∗ (𝑙 ↑ 𝑋)))))‘𝑘) = 𝐴) |
55 | 37, 54 | eqtrd 2644 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑂)‘𝑘) = 𝐴) |
56 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0
↦ (𝐵 ∗ (𝑘 ↑ 𝑋))))) |
57 | | nfcv 2751 |
. . . . . . . . . . 11
⊢
Ⅎ𝑙(𝐵 ∗ (𝑘 ↑ 𝑋)) |
58 | | nfcsb1v 3515 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 |
59 | 58, 27, 28 | nfov 6575 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(⦋𝑙 / 𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋)) |
60 | | csbeq1a 3508 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑘⦌𝐵) |
61 | 60, 31 | oveq12d 6567 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑙 → (𝐵 ∗ (𝑘 ↑ 𝑋)) = (⦋𝑙 / 𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋))) |
62 | 57, 59, 61 | cbvmpt 4677 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↦ (𝐵 ∗ (𝑘 ↑ 𝑋))) = (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋))) |
63 | 62 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ (𝐵 ∗ (𝑘 ↑ 𝑋))) = (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋)))) |
64 | 63 | oveq2d 6565 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑃 Σg
(𝑘 ∈
ℕ0 ↦ (𝐵 ∗ (𝑘 ↑ 𝑋)))) = (𝑃 Σg (𝑙 ∈ ℕ0
↦ (⦋𝑙 /
𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋))))) |
65 | 56, 64 | eqtrd 2644 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑄 = (𝑃 Σg (𝑙 ∈ ℕ0
↦ (⦋𝑙 /
𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋))))) |
66 | 65 | fveq2d 6107 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(coe1‘𝑄) =
(coe1‘(𝑃
Σg (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋)))))) |
67 | 66 | fveq1d 6105 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑄)‘𝑘) = ((coe1‘(𝑃 Σg
(𝑙 ∈
ℕ0 ↦ (⦋𝑙 / 𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋)))))‘𝑘)) |
68 | | nfv 1830 |
. . . . . . . . . 10
⊢
Ⅎ𝑙 𝐵 ∈ 𝐾 |
69 | 58 | nfel1 2765 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 ∈ 𝐾 |
70 | 60 | eleq1d 2672 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑙 → (𝐵 ∈ 𝐾 ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ 𝐾)) |
71 | 68, 69, 70 | cbvral 3143 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
ℕ0 𝐵
∈ 𝐾 ↔
∀𝑙 ∈
ℕ0 ⦋𝑙 / 𝑘⦌𝐵 ∈ 𝐾) |
72 | 15, 71 | sylib 207 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑙 ∈ ℕ0
⦋𝑙 / 𝑘⦌𝐵 ∈ 𝐾) |
73 | 72 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
∀𝑙 ∈
ℕ0 ⦋𝑙 / 𝑘⦌𝐵 ∈ 𝐾) |
74 | | nfcv 2751 |
. . . . . . . . . 10
⊢
Ⅎ𝑙𝐵 |
75 | 74, 58, 60 | cbvmpt 4677 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ 𝐵) = (𝑙 ∈ ℕ0
↦ ⦋𝑙 /
𝑘⦌𝐵) |
76 | 75, 16 | syl5eqbrr 4619 |
. . . . . . . 8
⊢ (𝜑 → (𝑙 ∈ ℕ0 ↦
⦋𝑙 / 𝑘⦌𝐵) finSupp 0 ) |
77 | 76 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑙 ∈ ℕ0
↦ ⦋𝑙 /
𝑘⦌𝐵) finSupp 0 ) |
78 | 3, 4, 5, 6, 38, 7,
8, 9, 73, 77, 49 | gsummoncoe1 19495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑃
Σg (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋)))))‘𝑘) = ⦋𝑘 / 𝑙⦌⦋𝑙 / 𝑘⦌𝐵) |
79 | | csbco 3509 |
. . . . . . 7
⊢
⦋𝑘 /
𝑙⦌⦋𝑙 / 𝑘⦌𝐵 = ⦋𝑘 / 𝑘⦌𝐵 |
80 | | csbid 3507 |
. . . . . . 7
⊢
⦋𝑘 /
𝑘⦌𝐵 = 𝐵 |
81 | 79, 80 | eqtri 2632 |
. . . . . 6
⊢
⦋𝑘 /
𝑙⦌⦋𝑙 / 𝑘⦌𝐵 = 𝐵 |
82 | 78, 81 | syl6eq 2660 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑃
Σg (𝑙 ∈ ℕ0 ↦
(⦋𝑙 / 𝑘⦌𝐵 ∗ (𝑙 ↑ 𝑋)))))‘𝑘) = 𝐵) |
83 | 67, 82 | eqtrd 2644 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑄)‘𝑘) = 𝐵) |
84 | 55, 83 | eqeq12d 2625 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝑂)‘𝑘) = ((coe1‘𝑄)‘𝑘) ↔ 𝐴 = 𝐵)) |
85 | 84 | ralbidva 2968 |
. 2
⊢ (𝜑 → (∀𝑘 ∈ ℕ0
((coe1‘𝑂)‘𝑘) = ((coe1‘𝑄)‘𝑘) ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵)) |
86 | 23, 85 | bitrd 267 |
1
⊢ (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵)) |