MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsum Structured version   Visualization version   GIF version

Theorem zsum 14296
Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
zsum.1 𝑍 = (ℤ𝑀)
zsum.2 (𝜑𝑀 ∈ ℤ)
zsum.3 (𝜑𝐴𝑍)
zsum.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
zsum.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
zsum (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem zsum
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛𝐴𝑖𝐴))
2 csbeq1 3502 . . . . . . . . . . . 12 (𝑛 = 𝑖𝑛 / 𝑘𝐵 = 𝑖 / 𝑘𝐵)
31, 2ifbieq1d 4059 . . . . . . . . . . 11 (𝑛 = 𝑖 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑖𝐴, 𝑖 / 𝑘𝐵, 0))
43cbvmptv 4678 . . . . . . . . . 10 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑖 ∈ ℤ ↦ if(𝑖𝐴, 𝑖 / 𝑘𝐵, 0))
5 simpll 786 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝜑)
6 zsum.5 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
76ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8 nfcsb1v 3515 . . . . . . . . . . . . . 14 𝑘𝑖 / 𝑘𝐵
98nfel1 2765 . . . . . . . . . . . . 13 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
10 csbeq1a 3508 . . . . . . . . . . . . . 14 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
1110eleq1d 2672 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
129, 11rspc 3276 . . . . . . . . . . . 12 (𝑖𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑖 / 𝑘𝐵 ∈ ℂ))
137, 12syl5 33 . . . . . . . . . . 11 (𝑖𝐴 → (𝜑𝑖 / 𝑘𝐵 ∈ ℂ))
145, 13mpan9 485 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
15 simplr 788 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑚 ∈ ℤ)
16 zsum.2 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1716ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑀 ∈ ℤ)
18 simpr 476 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑚))
19 zsum.3 . . . . . . . . . . . 12 (𝜑𝐴𝑍)
20 zsum.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2119, 20syl6sseq 3614 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (ℤ𝑀))
2221ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑀))
234, 14, 15, 17, 18, 22sumrb 14291 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2423biimpd 218 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2524expimpd 627 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2625rexlimdva 3013 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
2719ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴𝑍)
28 uzssz 11583 . . . . . . . . . . . . . . . 16 (ℤ𝑀) ⊆ ℤ
2920, 28eqsstri 3598 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℤ
30 zssre 11261 . . . . . . . . . . . . . . 15 ℤ ⊆ ℝ
3129, 30sstri 3577 . . . . . . . . . . . . . 14 𝑍 ⊆ ℝ
32 ltso 9997 . . . . . . . . . . . . . 14 < Or ℝ
33 soss 4977 . . . . . . . . . . . . . 14 (𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍))
3431, 32, 33mp2 9 . . . . . . . . . . . . 13 < Or 𝑍
35 soss 4977 . . . . . . . . . . . . 13 (𝐴𝑍 → ( < Or 𝑍 → < Or 𝐴))
3627, 34, 35mpisyl 21 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → < Or 𝐴)
37 fzfi 12633 . . . . . . . . . . . . 13 (1...𝑚) ∈ Fin
38 ovex 6577 . . . . . . . . . . . . . . . 16 (1...𝑚) ∈ V
3938f1oen 7862 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
4039adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
4140ensymd 7893 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ≈ (1...𝑚))
42 enfii 8062 . . . . . . . . . . . . 13 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
4337, 41, 42sylancr 694 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ∈ Fin)
44 fz1iso 13103 . . . . . . . . . . . 12 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
4536, 43, 44syl2anc 691 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
46 simpll 786 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝜑)
4746, 13mpan9 485 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
48 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
4948csbeq1d 3506 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
50 csbco 3509 . . . . . . . . . . . . . . . 16 (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵
5149, 50syl6eqr 2662 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
5251cbvmptv 4678 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
53 eqid 2610 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵)
54 simplr 788 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
5516ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ)
5621ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑀))
57 simprl 790 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
58 simprr 792 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
594, 47, 52, 53, 54, 55, 56, 57, 58summolem2a 14293 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
6059expr 641 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6160exlimdv 1848 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6245, 61mpd 15 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
63 breq2 4587 . . . . . . . . . 10 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6462, 63syl5ibrcom 236 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6564expimpd 627 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6665exlimdv 1848 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6766rexlimdva 3013 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6826, 67jaod 394 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
6916adantr 480 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → 𝑀 ∈ ℤ)
7021adantr 480 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → 𝐴 ⊆ (ℤ𝑀))
71 simpr 476 . . . . . . . 8 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)
72 fveq2 6103 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
7372sseq2d 3596 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑀)))
74 seqeq1 12666 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))))
7574breq1d 4593 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7673, 75anbi12d 743 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑀) ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)))
7776rspcev 3282 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝐴 ⊆ (ℤ𝑀) ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7869, 70, 71, 77syl12anc 1316 . . . . . . 7 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
7978orcd 406 . . . . . 6 ((𝜑 ∧ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
8079ex 449 . . . . 5 (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8168, 80impbid 201 . . . 4 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥))
82 simpr 476 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
8328, 82sseldi 3566 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℤ)
8482, 20syl6eleqr 2699 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗𝑍)
85 zsum.4 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
8685ralrimiva 2949 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
8786adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
88 nfcsb1v 3515 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)
8988nfeq2 2766 . . . . . . . . . . 11 𝑘(𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)
90 fveq2 6103 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
91 csbeq1a 3508 . . . . . . . . . . . 12 (𝑘 = 𝑗 → if(𝑘𝐴, 𝐵, 0) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
9290, 91eqeq12d 2625 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐹𝑘) = if(𝑘𝐴, 𝐵, 0) ↔ (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)))
9389, 92rspc 3276 . . . . . . . . . 10 (𝑗𝑍 → (∀𝑘𝑍 (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0) → (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0)))
9484, 87, 93sylc 63 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
95 fvex 6113 . . . . . . . . 9 (𝐹𝑗) ∈ V
9694, 95syl6eqelr 2697 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) ∈ V)
97 nfcv 2751 . . . . . . . . . . 11 𝑛if(𝑘𝐴, 𝐵, 0)
98 nfv 1830 . . . . . . . . . . . 12 𝑘 𝑛𝐴
99 nfcsb1v 3515 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝐵
100 nfcv 2751 . . . . . . . . . . . 12 𝑘0
10198, 99, 100nfif 4065 . . . . . . . . . . 11 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
102 eleq1 2676 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
103 csbeq1a 3508 . . . . . . . . . . . 12 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
104102, 103ifbieq1d 4059 . . . . . . . . . . 11 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
10597, 101, 104cbvmpt 4677 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
106105eqcomi 2619 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
107106fvmpts 6194 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0) ∈ V) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
10883, 96, 107syl2anc 691 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = 𝑗 / 𝑘if(𝑘𝐴, 𝐵, 0))
109108, 94eqtr4d 2647 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))‘𝑗) = (𝐹𝑗))
11016, 109seqfeq 12688 . . . . 5 (𝜑 → seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) = seq𝑀( + , 𝐹))
111110breq1d 4593 . . . 4 (𝜑 → (seq𝑀( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑀( + , 𝐹) ⇝ 𝑥))
11281, 111bitrd 267 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( + , 𝐹) ⇝ 𝑥))
113112iotabidv 5789 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥))
114 df-sum 14265 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
115 df-fv 5812 . 2 ( ⇝ ‘seq𝑀( + , 𝐹)) = (℩𝑥seq𝑀( + , 𝐹) ⇝ 𝑥)
116113, 114, 1153eqtr4g 2669 1 (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  csb 3499  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643   Or wor 4958  cio 5766  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549  cen 7838  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cn 10897  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  cli 14063  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  isum  14297  sum0  14299  sumz  14300  sumss  14302  fsumsers  14306
  Copyright terms: Public domain W3C validator