MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summo Structured version   Visualization version   GIF version

Theorem summo 14295
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
Assertion
Ref Expression
summo (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝐴   𝑓,𝐹,𝑘,𝑚,𝑛,𝑥   𝑘,𝐺,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛   𝐵,𝑓,𝑚,𝑛,𝑥   𝜑,𝑥,𝑓
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑓)

Proof of Theorem summo
Dummy variables 𝑔 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . . . . . 10 (𝑚 = 𝑛 → (ℤ𝑚) = (ℤ𝑛))
21sseq2d 3596 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑛)))
3 seqeq1 12666 . . . . . . . . . 10 (𝑚 = 𝑛 → seq𝑚( + , 𝐹) = seq𝑛( + , 𝐹))
43breq1d 4593 . . . . . . . . 9 (𝑚 = 𝑛 → (seq𝑚( + , 𝐹) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹) ⇝ 𝑦))
52, 4anbi12d 743 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)))
65cbvrexv 3148 . . . . . . 7 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))
7 reeanv 3086 . . . . . . . . 9 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)))
8 simprlr 799 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑚( + , 𝐹) ⇝ 𝑥)
9 summo.1 . . . . . . . . . . . . . 14 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
10 simpll 786 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝜑)
11 summo.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1210, 11sylan 487 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
13 simplrl 796 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑚 ∈ ℤ)
14 simplrr 797 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑛 ∈ ℤ)
15 simprll 798 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑚))
16 simprrl 800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑛))
179, 12, 13, 14, 15, 16sumrb 14291 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹) ⇝ 𝑥))
188, 17mpbid 221 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑥)
19 simprrr 801 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑦)
20 climuni 14131 . . . . . . . . . . . 12 ((seq𝑛( + , 𝐹) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)
2118, 19, 20syl2anc 691 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑥 = 𝑦)
2221exp31 628 . . . . . . . . . 10 (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)))
2322rexlimdvv 3019 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))
247, 23syl5bir 232 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))
2524expdimp 452 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
266, 25syl5bi 231 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
27 summo.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
289, 11, 27summolem2 14294 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
2926, 28jaod 394 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
309, 11, 27summolem2 14294 . . . . . . . 8 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑦 = 𝑥))
31 equcom 1932 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
3230, 31syl6ib 240 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
3332impancom 455 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
34 oveq2 6557 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
35 f1oeq2 6041 . . . . . . . . . . . 12 ((1...𝑚) = (1...𝑛) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
3634, 35syl 17 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
37 fveq2 6103 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘𝑛))
3837eqeq2d 2620 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑛)))
3936, 38anbi12d 743 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛))))
4039exbidv 1837 . . . . . . . . 9 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛))))
41 f1oeq1 6040 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴))
42 fveq1 6102 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑛) = (𝑔𝑛))
4342csbeq1d 3506 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔(𝑓𝑛) / 𝑘𝐵 = (𝑔𝑛) / 𝑘𝐵)
4443mpteq2dv 4673 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))
4527, 44syl5eq 2656 . . . . . . . . . . . . . 14 (𝑓 = 𝑔𝐺 = (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))
4645seqeq3d 12671 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵)))
4746fveq1d 6105 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (seq1( + , 𝐺)‘𝑛) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))
4847eqeq2d 2620 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)))
4941, 48anbi12d 743 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
5049cbvexv 2263 . . . . . . . . 9 (∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)))
5140, 50syl6bb 275 . . . . . . . 8 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
5251cbvrexv 3148 . . . . . . 7 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)))
53 reeanv 3086 . . . . . . . . 9 (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
54 eeanv 2170 . . . . . . . . . . 11 (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
55 an4 861 . . . . . . . . . . . . 13 (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
56 simpll 786 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝜑)
5756, 11sylan 487 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
58 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
5958csbeq1d 3506 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
6059cbvmptv 4678 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
6127, 60eqtri 2632 . . . . . . . . . . . . . . . 16 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
62 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (𝑔𝑛) = (𝑔𝑗))
6362csbeq1d 3506 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗(𝑔𝑛) / 𝑘𝐵 = (𝑔𝑗) / 𝑘𝐵)
6463cbvmptv 4678 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵)
65 simplr 788 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ))
66 simprl 790 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
67 simprr 792 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑔:(1...𝑛)–1-1-onto𝐴)
689, 57, 61, 64, 65, 66, 67summolem3 14292 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))
69 eqeq12 2623 . . . . . . . . . . . . . . 15 ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)))
7068, 69syl5ibrcom 236 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)) → 𝑥 = 𝑦))
7170expimpd 627 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7255, 71syl5bi 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7372exlimdvv 1849 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7454, 73syl5bir 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7574rexlimdvva 3020 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7653, 75syl5bir 232 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7776expdimp 452 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)) → 𝑥 = 𝑦))
7852, 77syl5bi 231 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
7933, 78jaod 394 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
8029, 79jaodan 822 . . . 4 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
8180expimpd 627 . . 3 (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
8281alrimivv 1843 . 2 (𝜑 → ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
83 breq2 4587 . . . . . 6 (𝑥 = 𝑦 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹) ⇝ 𝑦))
8483anbi2d 736 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)))
8584rexbidv 3034 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)))
86 eqeq1 2614 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑚)))
8786anbi2d 736 . . . . . 6 (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
8887exbidv 1837 . . . . 5 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
8988rexbidv 3034 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
9085, 89orbi12d 742 . . 3 (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))))
9190mo4 2505 . 2 (∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
9282, 91sylibr 223 1 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  ∃*wmo 2459  wrex 2897  csb 3499  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cn 10897  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  fsum  14298
  Copyright terms: Public domain W3C validator