MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum Structured version   Visualization version   GIF version

Theorem fsum 14298
Description: The value of a sum over a nonempty finite set. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsum (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑘   𝑘,𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsum
Dummy variables 𝑓 𝑖 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 14265 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 fvex 6113 . . 3 (seq1( + , 𝐺)‘𝑀) ∈ V
3 eleq1 2676 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛𝐴𝑗𝐴))
4 csbeq1 3502 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 / 𝑘𝐵 = 𝑗 / 𝑘𝐵)
53, 4ifbieq1d 4059 . . . . . . . . 9 (𝑛 = 𝑗 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
65cbvmptv 4678 . . . . . . . 8 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
7 fsum.4 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
9 nfcsb1v 3515 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
109nfel1 2765 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
11 csbeq1a 3508 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1211eleq1d 2672 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
1310, 12rspc 3276 . . . . . . . . 9 (𝑗𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑗 / 𝑘𝐵 ∈ ℂ))
148, 13mpan9 485 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
15 fveq2 6103 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
1615csbeq1d 3506 . . . . . . . . . 10 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵)
17 csbco 3509 . . . . . . . . . 10 (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵
1816, 17syl6eqr 2662 . . . . . . . . 9 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
1918cbvmptv 4678 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑖 ∈ ℕ ↦ (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
206, 14, 19summo 14295 . . . . . . 7 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
21 fsum.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
22 fsum.3 . . . . . . . . . . . 12 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
23 f1of 6050 . . . . . . . . . . . 12 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
2422, 23syl 17 . . . . . . . . . . 11 (𝜑𝐹:(1...𝑀)⟶𝐴)
25 ovex 6577 . . . . . . . . . . 11 (1...𝑀) ∈ V
26 fex 6394 . . . . . . . . . . 11 ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V)
2724, 25, 26sylancl 693 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
28 nnuz 11599 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2921, 28syl6eleq 2698 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘1))
30 fsum.5 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
31 elfznn 12241 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℕ)
3231adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℕ)
33 fvex 6113 . . . . . . . . . . . . . . . . 17 (𝐺𝑛) ∈ V
3430, 33syl6eqelr 2697 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ V)
35 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ 𝐶) = (𝑛 ∈ ℕ ↦ 𝐶)
3635fvmpt2 6200 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝐶 ∈ V) → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = 𝐶)
3732, 34, 36syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = 𝐶)
3830, 37eqtr4d 2647 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛))
3938ralrimiva 2949 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛))
40 nffvmpt1 6111 . . . . . . . . . . . . . . 15 𝑛((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)
4140nfeq2 2766 . . . . . . . . . . . . . 14 𝑛(𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)
42 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
43 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘))
4442, 43eqeq12d 2625 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) ↔ (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)))
4541, 44rspc 3276 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑀) → (∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) → (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)))
4639, 45mpan9 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘))
4729, 46seqfveq 12687 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))
4822, 47jca 553 . . . . . . . . . 10 (𝜑 → (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)))
49 f1oeq1 6040 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)–1-1-onto𝐴))
50 fveq1 6102 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
5150csbeq1d 3506 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
52 fvex 6113 . . . . . . . . . . . . . . . . . 18 (𝐹𝑛) ∈ V
53 fsum.1 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
5452, 53csbie 3525 . . . . . . . . . . . . . . . . 17 (𝐹𝑛) / 𝑘𝐵 = 𝐶
5551, 54syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = 𝐶)
5655mpteq2dv 4673 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ 𝐶))
5756seqeq3d 12671 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ 𝐶)))
5857fveq1d 6105 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))
5958eqeq2d 2620 . . . . . . . . . . . 12 (𝑓 = 𝐹 → ((seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)))
6049, 59anbi12d 743 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))))
6160spcegv 3267 . . . . . . . . . 10 (𝐹 ∈ V → ((𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)) → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
6227, 48, 61sylc 63 . . . . . . . . 9 (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)))
63 oveq2 6557 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
64 f1oeq2 6041 . . . . . . . . . . . . 13 ((1...𝑚) = (1...𝑀) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
6563, 64syl 17 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
66 fveq2 6103 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))
6766eqeq2d 2620 . . . . . . . . . . . 12 (𝑚 = 𝑀 → ((seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)))
6865, 67anbi12d 743 . . . . . . . . . . 11 (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
6968exbidv 1837 . . . . . . . . . 10 (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
7069rspcev 3282 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
7121, 62, 70syl2anc 691 . . . . . . . 8 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
7271olcd 407 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
73 breq2 4587 . . . . . . . . . . . . . 14 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)))
7473anbi2d 736 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀))))
7574rexbidv 3034 . . . . . . . . . . . 12 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀))))
76 eqeq1 2614 . . . . . . . . . . . . . . 15 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
7776anbi2d 736 . . . . . . . . . . . . . 14 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7877exbidv 1837 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7978rexbidv 3034 . . . . . . . . . . . 12 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
8075, 79orbi12d 742 . . . . . . . . . . 11 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8180moi2 3354 . . . . . . . . . 10 ((((seq1( + , 𝐺)‘𝑀) ∈ V ∧ ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
822, 81mpanl1 712 . . . . . . . . 9 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
8382ancom2s 840 . . . . . . . 8 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
8483expr 641 . . . . . . 7 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8520, 72, 84syl2anc 691 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8672, 80syl5ibrcom 236 . . . . . 6 (𝜑 → (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8785, 86impbid 201 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8887adantr 480 . . . 4 ((𝜑 ∧ (seq1( + , 𝐺)‘𝑀) ∈ V) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8988iota5 5788 . . 3 ((𝜑 ∧ (seq1( + , 𝐺)‘𝑀) ∈ V) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (seq1( + , 𝐺)‘𝑀))
902, 89mpan2 703 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (seq1( + , 𝐺)‘𝑀))
911, 90syl5eq 2656 1 (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  ∃*wmo 2459  wral 2896  wrex 2897  Vcvv 3173  csb 3499  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  cio 5766  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cn 10897  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cli 14063  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  sumz  14300  fsumf1o  14301  fsumcl2lem  14309  fsumadd  14317  sumsn  14319  fsummulc2  14358  fsumconst  14364  fsumrelem  14380  gsumfsum  19632  sumsnd  38208  sumsnf  38636
  Copyright terms: Public domain W3C validator