Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbco Structured version   Visualization version   GIF version

Theorem csbco 3509
 Description: Composition law for chained substitutions into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbco 𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem csbco
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3500 . . . . . 6 𝑦 / 𝑥𝐵 = {𝑧[𝑦 / 𝑥]𝑧𝐵}
21abeq2i 2722 . . . . 5 (𝑧𝑦 / 𝑥𝐵[𝑦 / 𝑥]𝑧𝐵)
32sbcbii 3458 . . . 4 ([𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵[𝐴 / 𝑦][𝑦 / 𝑥]𝑧𝐵)
4 sbcco 3425 . . . 4 ([𝐴 / 𝑦][𝑦 / 𝑥]𝑧𝐵[𝐴 / 𝑥]𝑧𝐵)
53, 4bitri 263 . . 3 ([𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵[𝐴 / 𝑥]𝑧𝐵)
65abbii 2726 . 2 {𝑧[𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵} = {𝑧[𝐴 / 𝑥]𝑧𝐵}
7 df-csb 3500 . 2 𝐴 / 𝑦𝑦 / 𝑥𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵}
8 df-csb 3500 . 2 𝐴 / 𝑥𝐵 = {𝑧[𝐴 / 𝑥]𝑧𝐵}
96, 7, 83eqtr4i 2642 1 𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  {cab 2596  [wsbc 3402  ⦋csb 3499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175  df-sbc 3403  df-csb 3500 This theorem is referenced by:  csbnest1g  3953  csbvarg  3955  fvmpt2curryd  7284  zsum  14296  fsum  14298  zprod  14506  fprod  14510  gsumply1eq  19496  bj-csbsn  32091  sbccom2  33100  disjrnmpt2  38370  disjinfi  38375  fsumsplitf  38634  dvmptmulf  38827  dvmptfprod  38835
 Copyright terms: Public domain W3C validator