Step | Hyp | Ref
| Expression |
1 | | 0cn 9911 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
2 | | fsumrelem.3 |
. . . . . . . . 9
⊢ 𝐹:ℂ⟶ℂ |
3 | 2 | ffvelrni 6266 |
. . . . . . . 8
⊢ (0 ∈
ℂ → (𝐹‘0)
∈ ℂ) |
4 | 1, 3 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹‘0) ∈
ℂ |
5 | 4 | addid1i 10102 |
. . . . . 6
⊢ ((𝐹‘0) + 0) = (𝐹‘0) |
6 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦)) |
7 | 6 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦))) |
8 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) |
9 | 8 | oveq1d 6564 |
. . . . . . . . 9
⊢ (𝑥 = 0 → ((𝐹‘𝑥) + (𝐹‘𝑦)) = ((𝐹‘0) + (𝐹‘𝑦))) |
10 | 7, 9 | eqeq12d 2625 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹‘𝑦)))) |
11 | | oveq2 6557 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → (0 + 𝑦) = (0 + 0)) |
12 | | 00id 10090 |
. . . . . . . . . . 11
⊢ (0 + 0) =
0 |
13 | 11, 12 | syl6eq 2660 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (0 + 𝑦) = 0) |
14 | 13 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0)) |
15 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (𝐹‘𝑦) = (𝐹‘0)) |
16 | 15 | oveq2d 6565 |
. . . . . . . . 9
⊢ (𝑦 = 0 → ((𝐹‘0) + (𝐹‘𝑦)) = ((𝐹‘0) + (𝐹‘0))) |
17 | 14, 16 | eqeq12d 2625 |
. . . . . . . 8
⊢ (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹‘𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))) |
18 | | fsumrelem.4 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
19 | 10, 17, 18 | vtocl2ga 3247 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))) |
20 | 1, 1, 19 | mp2an 704 |
. . . . . 6
⊢ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)) |
21 | 5, 20 | eqtr2i 2633 |
. . . . 5
⊢ ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) |
22 | 4, 4, 1 | addcani 10108 |
. . . . 5
⊢ (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0) |
23 | 21, 22 | mpbi 219 |
. . . 4
⊢ (𝐹‘0) = 0 |
24 | | sumeq1 14267 |
. . . . . 6
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
25 | | sum0 14299 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
26 | 24, 25 | syl6eq 2660 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
27 | 26 | fveq2d 6107 |
. . . 4
⊢ (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = (𝐹‘0)) |
28 | | sumeq1 14267 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) = Σ𝑘 ∈ ∅ (𝐹‘𝐵)) |
29 | | sum0 14299 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (𝐹‘𝐵) = 0 |
30 | 28, 29 | syl6eq 2660 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) = 0) |
31 | 23, 27, 30 | 3eqtr4a 2670 |
. . 3
⊢ (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
32 | 31 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
33 | | addcl 9897 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
34 | 33 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
35 | | fsumre.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
36 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
37 | 35, 36 | fmptd 6292 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
39 | | simprr 792 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) |
40 | | f1of 6050 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(#‘𝐴))⟶𝐴) |
41 | 39, 40 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴) |
42 | | fco 5971 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ) |
43 | 38, 41, 42 | syl2anc 691 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ) |
44 | 43 | ffvelrnda 6267 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ) |
45 | | simprl 790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈
ℕ) |
46 | | nnuz 11599 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
47 | 45, 46 | syl6eleq 2698 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈
(ℤ≥‘1)) |
48 | 18 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
49 | 41 | ffvelrnda 6267 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝑓‘𝑥) ∈ 𝐴) |
50 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
51 | 36 | fvmpt2 6200 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
52 | 50, 35, 51 | syl2anc 691 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
53 | 52 | fveq2d 6107 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐹‘𝐵)) |
54 | | fvex 6113 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝐵) ∈ V |
55 | | eqid 2610 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) |
56 | 55 | fvmpt2 6200 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ V) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = (𝐹‘𝐵)) |
57 | 50, 54, 56 | sylancl 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = (𝐹‘𝐵)) |
58 | 53, 57 | eqtr4d 2647 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
59 | 58 | ralrimiva 2949 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
60 | 59 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → ∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
61 | | nfcv 2751 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐹 |
62 | | nffvmpt1 6111 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)) |
63 | 61, 62 | nffv 6110 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
64 | | nffvmpt1 6111 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)) |
65 | 63, 64 | nfeq 2762 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)) |
66 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
67 | 66 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑥) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)))) |
68 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
69 | 67, 68 | eqeq12d 2625 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑥) → ((𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) ↔ (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)))) |
70 | 65, 69 | rspc 3276 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)))) |
71 | 49, 60, 70 | sylc 63 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
72 | | fvco3 6185 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(#‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
73 | 41, 72 | sylan 487 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
74 | 73 | fveq2d 6107 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝐹‘(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥)) = (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)))) |
75 | | fvco3 6185 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(#‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
76 | 41, 75 | sylan 487 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
77 | 71, 74, 76 | 3eqtr4d 2654 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝐹‘(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥)) = (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥)) |
78 | 34, 44, 47, 48, 77 | seqhomo 12710 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐹‘(seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴))) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓))‘(#‘𝐴))) |
79 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
80 | 38 | ffvelrnda 6267 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
81 | 79, 45, 39, 80, 73 | fsum 14298 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴))) |
82 | 81 | fveq2d 6107 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐹‘(seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴)))) |
83 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
84 | 2 | ffvelrni 6266 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℂ → (𝐹‘𝐵) ∈ ℂ) |
85 | 35, 84 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℂ) |
86 | 85, 55 | fmptd 6292 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℂ) |
87 | 86 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℂ) |
88 | 87 | ffvelrnda 6267 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) ∈ ℂ) |
89 | 83, 45, 39, 88, 76 | fsum 14298 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓))‘(#‘𝐴))) |
90 | 78, 82, 89 | 3eqtr4d 2654 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚)) |
91 | | sumfc 14287 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵 |
92 | 91 | fveq2i 6106 |
. . . . . 6
⊢ (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) |
93 | | sumfc 14287 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) |
94 | 90, 92, 93 | 3eqtr3g 2667 |
. . . . 5
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
95 | 94 | expr 641 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
96 | 95 | exlimdv 1848 |
. . 3
⊢ ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
97 | 96 | expimpd 627 |
. 2
⊢ (𝜑 → (((#‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
98 | | fsumre.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
99 | | fz1f1o 14288 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
100 | 98, 99 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
101 | 32, 97, 100 | mpjaod 395 |
1
⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |