Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumsnd Structured version   Visualization version   GIF version

Theorem sumsnd 38208
 Description: A sum of a singleton is the term. The deduction version of sumsn 14319. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
sumsnd.1 (𝜑𝑘𝐵)
sumsnd.2 𝑘𝜑
sumsnd.3 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
sumsnd.4 (𝜑𝑀𝑉)
sumsnd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
sumsnd (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem sumsnd
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . . 4 𝑚𝐴
2 nfcsb1v 3515 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3508 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 14275 . . 3 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3502 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 10908 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 (𝜑 → 1 ∈ ℕ)
8 sumsnd.4 . . . . . 6 (𝜑𝑀𝑉)
9 f1osng 6089 . . . . . 6 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 694 . . . . 5 (𝜑 → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 11284 . . . . . 6 1 ∈ ℤ
12 fzsn 12254 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 6041 . . . . . 6 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 10 . . . . 5 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 223 . . . 4 (𝜑 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 4142 . . . . . . 7 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3506 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnd.2 . . . . . . . 8 𝑘𝜑
20 sumsnd.1 . . . . . . . 8 (𝜑𝑘𝐵)
21 sumsnd.3 . . . . . . . 8 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
2219, 20, 8, 21csbiedf 3520 . . . . . . 7 (𝜑𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 480 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 sumsnd.5 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2524adantr 480 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2623, 25eqeltrd 2688 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2718, 26eqeltrd 2688 . . . 4 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2822adantr 480 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
29 elfz1eq 12223 . . . . . . . 8 (𝑛 ∈ (1...1) → 𝑛 = 1)
3029fveq2d 6107 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
31 fvsng 6352 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
326, 8, 31sylancr 694 . . . . . . 7 (𝜑 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3330, 32sylan9eqr 2666 . . . . . 6 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3433csbeq1d 3506 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3529fveq2d 6107 . . . . . 6 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
36 fvsng 6352 . . . . . . 7 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 24, 36sylancr 694 . . . . . 6 (𝜑 → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3835, 37sylan9eqr 2666 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3928, 34, 383eqtr4rd 2655 . . . 4 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 27, 39fsum 14298 . . 3 (𝜑 → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
414, 40syl5eq 2656 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
4211, 37seq1i 12677 . 2 (𝜑 → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵)
4341, 42eqtrd 2644 1 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738  ⦋csb 3499  {csn 4125  ⟨cop 4131  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  1c1 9816   + caddc 9818  ℕcn 10897  ℤcz 11254  ...cfz 12197  seqcseq 12663  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by:  sumpair  38217  dvnmul  38833  sge0sn  39272  hoidmvlelem3  39487
 Copyright terms: Public domain W3C validator