MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumf1o Structured version   Visualization version   GIF version

Theorem fsumf1o 14301
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1o.2 (𝜑𝐶 ∈ Fin)
fsumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1o (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1o
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 14299 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
2 fsumf1o.3 . . . . . . . 8 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1oeq2 6041 . . . . . . . 8 (𝐶 = ∅ → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
42, 3syl5ibcom 234 . . . . . . 7 (𝜑 → (𝐶 = ∅ → 𝐹:∅–1-1-onto𝐴))
54imp 444 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐹:∅–1-1-onto𝐴)
6 f1ofo 6057 . . . . . 6 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
7 fo00 6084 . . . . . . 7 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
87simprbi 479 . . . . . 6 (𝐹:∅–onto𝐴𝐴 = ∅)
95, 6, 83syl 18 . . . . 5 ((𝜑𝐶 = ∅) → 𝐴 = ∅)
109sumeq1d 14279 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
11 simpr 476 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
1211sumeq1d 14279 . . . . 5 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = Σ𝑛 ∈ ∅ 𝐷)
13 sum0 14299 . . . . 5 Σ𝑛 ∈ ∅ 𝐷 = 0
1412, 13syl6eq 2660 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = 0)
151, 10, 143eqtr4a 2670 . . 3 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
1615ex 449 . 2 (𝜑 → (𝐶 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
17 fveq2 6103 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → (𝐹𝑚) = (𝐹‘(𝑓𝑛)))
1817fveq2d 6107 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
19 simprl 790 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (#‘𝐶) ∈ ℕ)
20 simprr 792 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)
21 f1of 6050 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
222, 21syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐶𝐴)
2322ffvelrnda 6267 . . . . . . . . . 10 ((𝜑𝑚𝐶) → (𝐹𝑚) ∈ 𝐴)
24 fsumf1o.5 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
25 eqid 2610 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
2624, 25fmptd 6292 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2726ffvelrnda 6267 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2823, 27syldan 486 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2928adantlr 747 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
302adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝐹:𝐶1-1-onto𝐴)
31 f1oco 6072 . . . . . . . . . . . 12 ((𝐹:𝐶1-1-onto𝐴𝑓:(1...(#‘𝐶))–1-1-onto𝐶) → (𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴)
3230, 20, 31syl2anc 691 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴)
33 f1of 6050 . . . . . . . . . . 11 ((𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴 → (𝐹𝑓):(1...(#‘𝐶))⟶𝐴)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(#‘𝐶))⟶𝐴)
35 fvco3 6185 . . . . . . . . . 10 (((𝐹𝑓):(1...(#‘𝐶))⟶𝐴𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
3634, 35sylan 487 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
37 f1of 6050 . . . . . . . . . . . 12 (𝑓:(1...(#‘𝐶))–1-1-onto𝐶𝑓:(1...(#‘𝐶))⟶𝐶)
3837ad2antll 761 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(#‘𝐶))⟶𝐶)
39 fvco3 6185 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐶))⟶𝐶𝑛 ∈ (1...(#‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4038, 39sylan 487 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4140fveq2d 6107 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4236, 41eqtrd 2644 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4318, 19, 20, 29, 42fsum 14298 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)) = (seq1( + , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(#‘𝐶)))
44 fsumf1o.4 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4522ffvelrnda 6267 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
4644, 45eqeltrrd 2689 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐺𝐴)
47 fsumf1o.1 . . . . . . . . . . . . . 14 (𝑘 = 𝐺𝐵 = 𝐷)
4847, 25fvmpti 6190 . . . . . . . . . . . . 13 (𝐺𝐴 → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
4946, 48syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
5044fveq2d 6107 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘𝐺))
51 eqid 2610 . . . . . . . . . . . . . 14 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
5251fvmpt2i 6199 . . . . . . . . . . . . 13 (𝑛𝐶 → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5352adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5449, 50, 533eqtr4rd 2655 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
5554ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
56 nffvmpt1 6111 . . . . . . . . . . . 12 𝑛((𝑛𝐶𝐷)‘𝑚)
5756nfeq1 2764 . . . . . . . . . . 11 𝑛((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))
58 fveq2 6103 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑛𝐶𝐷)‘𝑛) = ((𝑛𝐶𝐷)‘𝑚))
59 fveq2 6103 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
6059fveq2d 6107 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6158, 60eqeq12d 2625 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) ↔ ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6257, 61rspc 3276 . . . . . . . . . 10 (𝑚𝐶 → (∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6355, 62mpan9 485 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6463adantlr 747 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6564sumeq2dv 14281 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)))
66 fveq2 6103 . . . . . . . 8 (𝑚 = ((𝐹𝑓)‘𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
6726adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6867ffvelrnda 6267 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
6966, 19, 32, 68, 36fsum 14298 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(#‘𝐶)))
7043, 65, 693eqtr4rd 2655 . . . . . 6 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚))
71 sumfc 14287 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
72 sumfc 14287 . . . . . 6 Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷
7370, 71, 723eqtr3g 2667 . . . . 5 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
7473expr 641 . . . 4 ((𝜑 ∧ (#‘𝐶) ∈ ℕ) → (𝑓:(1...(#‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
7574exlimdv 1848 . . 3 ((𝜑 ∧ (#‘𝐶) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
7675expimpd 627 . 2 (𝜑 → (((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
77 fsumf1o.2 . . 3 (𝜑𝐶 ∈ Fin)
78 fz1f1o 14288 . . 3 (𝐶 ∈ Fin → (𝐶 = ∅ ∨ ((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)))
7977, 78syl 17 . 2 (𝜑 → (𝐶 = ∅ ∨ ((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)))
8016, 76, 79mpjaod 395 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  c0 3874  cmpt 4643   I cid 4948  ccom 5042  wf 5800  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cn 10897  ...cfz 12197  seqcseq 12663  #chash 12979  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  fsumss  14303  fsum2dlem  14343  fsumcnv  14346  fsumrev  14353  fsumshft  14354  ackbijnn  14399  incexclem  14407  phisum  15333  ovoliunlem1  23077  ovolicc2lem4  23095  itg1addlem4  23272  itg1mulc  23277  basellem3  24609  basellem5  24611  fsumdvdscom  24711  dvdsflsumcom  24714  musum  24717  fsumdvdsmul  24721  sgmppw  24722  fsumvma  24738  dchrsum2  24793  sumdchr2  24795  dchrisumlem1  24978  dchrisum0flblem1  24997  dchrisum0fno1  25000  eulerpartlemgs2  29769  fsumf1of  38641  sumnnodd  38697  dvnprodlem2  38837
  Copyright terms: Public domain W3C validator