MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summo Structured version   Unicode version

Theorem summo 13296
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
summo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
summo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
summo.3  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
Assertion
Ref Expression
summo  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
Distinct variable groups:    f, k, m, n, x, A    f, F, k, m, n, x   
k, G, m, n, x    ph, k, m, n    B, f, m, n, x    ph, x, f
Allowed substitution hints:    B( k)    G( f)

Proof of Theorem summo
Dummy variables  g 
j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5789 . . . . . . . . . 10  |-  ( m  =  n  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  n )
)
21sseq2d 3482 . . . . . . . . 9  |-  ( m  =  n  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  n ) ) )
3 seqeq1 11910 . . . . . . . . . 10  |-  ( m  =  n  ->  seq m (  +  ,  F )  =  seq n (  +  ,  F ) )
43breq1d 4400 . . . . . . . . 9  |-  ( m  =  n  ->  (  seq m (  +  ,  F )  ~~>  y  <->  seq n
(  +  ,  F
)  ~~>  y ) )
52, 4anbi12d 710 . . . . . . . 8  |-  ( m  =  n  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  y )  <-> 
( A  C_  ( ZZ>=
`  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )
65cbvrexv 3044 . . . . . . 7  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  <->  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )
7 reeanv 2984 . . . . . . . . 9  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )
8 simprlr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq m (  +  ,  F )  ~~>  x )
9 summo.1 . . . . . . . . . . . . . 14  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
10 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  ph )
11 summo.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1210, 11sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  /\  k  e.  A )  ->  B  e.  CC )
13 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  m  e.  ZZ )
14 simplrr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  n  e.  ZZ )
15 simprll 761 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  A  C_  ( ZZ>= `  m )
)
16 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  A  C_  ( ZZ>= `  n )
)
179, 12, 13, 14, 15, 16sumrb 13292 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  (  seq m (  +  ,  F )  ~~>  x  <->  seq n
(  +  ,  F
)  ~~>  x ) )
188, 17mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq n (  +  ,  F )  ~~>  x )
19 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq n (  +  ,  F )  ~~>  y )
20 climuni 13132 . . . . . . . . . . . 12  |-  ( (  seq n (  +  ,  F )  ~~>  x  /\  seq n (  +  ,  F )  ~~>  y )  ->  x  =  y )
2118, 19, 20syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  x  =  y )
2221exp31 604 . . . . . . . . . 10  |-  ( ph  ->  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  (
( ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) ) )
2322rexlimdvv 2943 . . . . . . . . 9  |-  ( ph  ->  ( E. m  e.  ZZ  E. n  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) )
247, 23syl5bir 218 . . . . . . . 8  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) )
2524expdimp 437 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n
)  /\  seq n
(  +  ,  F
)  ~~>  y )  ->  x  =  y )
)
266, 25syl5bi 217 . . . . . 6  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  ->  x  =  y )
)
27 summo.3 . . . . . . 7  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
289, 11, 27summolem2 13295 . . . . . 6  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
2926, 28jaod 380 . . . . 5  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
309, 11, 27summolem2 13295 . . . . . . . 8  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  -> 
y  =  x ) )
31 equcom 1734 . . . . . . . 8  |-  ( y  =  x  <->  x  =  y )
3230, 31syl6ib 226 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
3332impancom 440 . . . . . 6  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  ->  x  =  y ) )
34 oveq2 6198 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
1 ... m )  =  ( 1 ... n
) )
35 f1oeq2 5731 . . . . . . . . . . . 12  |-  ( ( 1 ... m )  =  ( 1 ... n )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... n
)
-1-1-onto-> A ) )
3634, 35syl 16 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... n
)
-1-1-onto-> A ) )
37 fveq2 5789 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (  seq 1 (  +  ,  G ) `  m
)  =  (  seq 1 (  +  ,  G ) `  n
) )
3837eqeq2d 2465 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
y  =  (  seq 1 (  +  ,  G ) `  m
)  <->  y  =  (  seq 1 (  +  ,  G ) `  n ) ) )
3936, 38anbi12d 710 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  ( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `
 n ) ) ) )
4039exbidv 1681 . . . . . . . . 9  |-  ( m  =  n  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) ) ) )
41 f1oeq1 5730 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
f : ( 1 ... n ) -1-1-onto-> A  <->  g :
( 1 ... n
)
-1-1-onto-> A ) )
42 fveq1 5788 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
f `  n )  =  ( g `  n ) )
4342csbeq1d 3393 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( g `  n )  /  k ]_ B )
4443mpteq2dv 4477 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  (
n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) )
4527, 44syl5eq 2504 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  G  =  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) )
4645seqeq3d 11915 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  seq 1 (  +  ,  G )  =  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) )
4746fveq1d 5791 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (  seq 1 (  +  ,  G ) `  n
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )
4847eqeq2d 2465 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
y  =  (  seq 1 (  +  ,  G ) `  n
)  <->  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
4941, 48anbi12d 710 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) )  <->  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
g `  n )  /  k ]_ B
) ) `  n
) ) ) )
5049cbvexv 1981 . . . . . . . . 9  |-  ( E. f ( f : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) )  <->  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
5140, 50syl6bb 261 . . . . . . . 8  |-  ( m  =  n  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
5251cbvrexv 3044 . . . . . . 7  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. n  e.  NN  E. g ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) ) )
53 reeanv 2984 . . . . . . . . 9  |-  ( E. m  e.  NN  E. n  e.  NN  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. n  e.  NN  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
54 eeanv 1941 . . . . . . . . . . 11  |-  ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
55 an4 820 . . . . . . . . . . . . 13  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  g : ( 1 ... n ) -1-1-onto-> A )  /\  ( x  =  (  seq 1
(  +  ,  G
) `  m )  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) ) ) )
56 simpll 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  ->  ph )
5756, 11sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
58 fveq2 5789 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  (
f `  n )  =  ( f `  j ) )
5958csbeq1d 3393 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  j  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  j )  /  k ]_ B )
6059cbvmptv 4481 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
f `  j )  /  k ]_ B
)
6127, 60eqtri 2480 . . . . . . . . . . . . . . . 16  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
62 fveq2 5789 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  j  ->  (
g `  n )  =  ( g `  j ) )
6362csbeq1d 3393 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  [_ (
g `  n )  /  k ]_ B  =  [_ ( g `  j )  /  k ]_ B )
6463cbvmptv 4481 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  |->  [_ (
g `  n )  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
)
65 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
( m  e.  NN  /\  n  e.  NN ) )
66 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
67 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
g : ( 1 ... n ) -1-1-onto-> A )
689, 57, 61, 64, 65, 66, 67summolem3 13293 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
(  seq 1 (  +  ,  G ) `  m )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) )
69 eqeq12 2470 . . . . . . . . . . . . . . 15  |-  ( ( x  =  (  seq 1 (  +  ,  G ) `  m
)  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) )  -> 
( x  =  y  <-> 
(  seq 1 (  +  ,  G ) `  m )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
7068, 69syl5ibrcom 222 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
( ( x  =  (  seq 1 (  +  ,  G ) `
 m )  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )  ->  x  =  y )
)
7170expimpd 603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A )  /\  (
x  =  (  seq 1 (  +  ,  G ) `  m
)  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7255, 71syl5bi 217 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `
 m ) )  /\  ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7372exlimdvv 1692 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `
 m ) )  /\  ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7454, 73syl5bir 218 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7574rexlimdvva 2944 . . . . . . . . 9  |-  ( ph  ->  ( E. m  e.  NN  E. n  e.  NN  ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7653, 75syl5bir 218 . . . . . . . 8  |-  ( ph  ->  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. n  e.  NN  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7776expdimp 437 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. n  e.  NN  E. g ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )  ->  x  =  y )
)
7852, 77syl5bi 217 . . . . . 6  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
7933, 78jaod 380 . . . . 5  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
8029, 79jaodan 783 . . . 4  |-  ( (
ph  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
8180expimpd 603 . . 3  |-  ( ph  ->  ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
8281alrimivv 1687 . 2  |-  ( ph  ->  A. x A. y
( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
83 breq2 4394 . . . . . 6  |-  ( x  =  y  ->  (  seq m (  +  ,  F )  ~~>  x  <->  seq m
(  +  ,  F
)  ~~>  y ) )
8483anbi2d 703 . . . . 5  |-  ( x  =  y  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  y ) ) )
8584rexbidv 2844 . . . 4  |-  ( x  =  y  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) ) )
86 eqeq1 2455 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  (  seq 1 (  +  ,  G ) `  m
)  <->  y  =  (  seq 1 (  +  ,  G ) `  m ) ) )
8786anbi2d 703 . . . . . 6  |-  ( x  =  y  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `
 m ) ) ) )
8887exbidv 1681 . . . . 5  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
8988rexbidv 2844 . . . 4  |-  ( x  =  y  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )
9085, 89orbi12d 709 . . 3  |-  ( x  =  y  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) ) ) ) )
9190mo4 2324 . 2  |-  ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  <->  A. x A. y ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
9282, 91sylibr 212 1  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758   E*wmo 2261   E.wrex 2796   [_csb 3386    C_ wss 3426   ifcif 3889   class class class wbr 4390    |-> cmpt 4448   -1-1-onto->wf1o 5515   ` cfv 5516  (class class class)co 6190   CCcc 9381   0cc0 9383   1c1 9384    + caddc 9386   NNcn 10423   ZZcz 10747   ZZ>=cuz 10962   ...cfz 11538    seqcseq 11907    ~~> cli 13064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-sup 7792  df-oi 7825  df-card 8210  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-n0 10681  df-z 10748  df-uz 10963  df-rp 11093  df-fz 11539  df-fzo 11650  df-seq 11908  df-exp 11967  df-hash 12205  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827  df-clim 13068
This theorem is referenced by:  fsum  13299
  Copyright terms: Public domain W3C validator