MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summo Structured version   Visualization version   Unicode version

Theorem summo 13795
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
summo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
summo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
summo.3  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
Assertion
Ref Expression
summo  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
Distinct variable groups:    f, k, m, n, x, A    f, F, k, m, n, x   
k, G, m, n, x    ph, k, m, n    B, f, m, n, x    ph, x, f
Allowed substitution hints:    B( k)    G( f)

Proof of Theorem summo
Dummy variables  g 
j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5870 . . . . . . . . . 10  |-  ( m  =  n  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  n )
)
21sseq2d 3462 . . . . . . . . 9  |-  ( m  =  n  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  n ) ) )
3 seqeq1 12223 . . . . . . . . . 10  |-  ( m  =  n  ->  seq m (  +  ,  F )  =  seq n (  +  ,  F ) )
43breq1d 4415 . . . . . . . . 9  |-  ( m  =  n  ->  (  seq m (  +  ,  F )  ~~>  y  <->  seq n
(  +  ,  F
)  ~~>  y ) )
52, 4anbi12d 718 . . . . . . . 8  |-  ( m  =  n  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  y )  <-> 
( A  C_  ( ZZ>=
`  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )
65cbvrexv 3022 . . . . . . 7  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  <->  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )
7 reeanv 2960 . . . . . . . . 9  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )
8 simprlr 774 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq m (  +  ,  F )  ~~>  x )
9 summo.1 . . . . . . . . . . . . . 14  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
10 simpll 761 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  ph )
11 summo.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1210, 11sylan 474 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  /\  k  e.  A )  ->  B  e.  CC )
13 simplrl 771 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  m  e.  ZZ )
14 simplrr 772 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  n  e.  ZZ )
15 simprll 773 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  A  C_  ( ZZ>= `  m )
)
16 simprrl 775 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  A  C_  ( ZZ>= `  n )
)
179, 12, 13, 14, 15, 16sumrb 13791 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  (  seq m (  +  ,  F )  ~~>  x  <->  seq n
(  +  ,  F
)  ~~>  x ) )
188, 17mpbid 214 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq n (  +  ,  F )  ~~>  x )
19 simprrr 776 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  seq n (  +  ,  F )  ~~>  y )
20 climuni 13628 . . . . . . . . . . . 12  |-  ( (  seq n (  +  ,  F )  ~~>  x  /\  seq n (  +  ,  F )  ~~>  y )  ->  x  =  y )
2118, 19, 20syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  n  e.  ZZ )
)  /\  ( ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) ) )  ->  x  =  y )
2221exp31 609 . . . . . . . . . 10  |-  ( ph  ->  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  (
( ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) ) )
2322rexlimdvv 2887 . . . . . . . . 9  |-  ( ph  ->  ( E. m  e.  ZZ  E. n  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  /\  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) )
247, 23syl5bir 222 . . . . . . . 8  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  /\  E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n )  /\  seq n (  +  ,  F )  ~~>  y ) )  ->  x  =  y ) )
2524expdimp 439 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. n  e.  ZZ  ( A  C_  ( ZZ>= `  n
)  /\  seq n
(  +  ,  F
)  ~~>  y )  ->  x  =  y )
)
266, 25syl5bi 221 . . . . . 6  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  ->  x  =  y )
)
27 summo.3 . . . . . . 7  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
289, 11, 27summolem2 13794 . . . . . 6  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
2926, 28jaod 382 . . . . 5  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
309, 11, 27summolem2 13794 . . . . . . . 8  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  -> 
y  =  x ) )
31 equcom 1864 . . . . . . . 8  |-  ( y  =  x  <->  x  =  y )
3230, 31syl6ib 230 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
3332impancom 442 . . . . . 6  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  ->  x  =  y ) )
34 oveq2 6303 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
1 ... m )  =  ( 1 ... n
) )
35 f1oeq2 5811 . . . . . . . . . . . 12  |-  ( ( 1 ... m )  =  ( 1 ... n )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... n
)
-1-1-onto-> A ) )
3634, 35syl 17 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... n
)
-1-1-onto-> A ) )
37 fveq2 5870 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (  seq 1 (  +  ,  G ) `  m
)  =  (  seq 1 (  +  ,  G ) `  n
) )
3837eqeq2d 2463 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
y  =  (  seq 1 (  +  ,  G ) `  m
)  <->  y  =  (  seq 1 (  +  ,  G ) `  n ) ) )
3936, 38anbi12d 718 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  ( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `
 n ) ) ) )
4039exbidv 1770 . . . . . . . . 9  |-  ( m  =  n  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) ) ) )
41 f1oeq1 5810 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
f : ( 1 ... n ) -1-1-onto-> A  <->  g :
( 1 ... n
)
-1-1-onto-> A ) )
42 fveq1 5869 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
f `  n )  =  ( g `  n ) )
4342csbeq1d 3372 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( g `  n )  /  k ]_ B )
4443mpteq2dv 4493 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  (
n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) )
4527, 44syl5eq 2499 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  G  =  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) )
4645seqeq3d 12228 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  seq 1 (  +  ,  G )  =  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) )
4746fveq1d 5872 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (  seq 1 (  +  ,  G ) `  n
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )
4847eqeq2d 2463 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
y  =  (  seq 1 (  +  ,  G ) `  n
)  <->  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
4941, 48anbi12d 718 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( f : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) )  <->  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
g `  n )  /  k ]_ B
) ) `  n
) ) ) )
5049cbvexv 2119 . . . . . . . . 9  |-  ( E. f ( f : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  n ) )  <->  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
5140, 50syl6bb 265 . . . . . . . 8  |-  ( m  =  n  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
5251cbvrexv 3022 . . . . . . 7  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. n  e.  NN  E. g ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) ) )
53 reeanv 2960 . . . . . . . . 9  |-  ( E. m  e.  NN  E. n  e.  NN  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. n  e.  NN  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
54 eeanv 2080 . . . . . . . . . . 11  |-  ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) ) )
55 an4 834 . . . . . . . . . . . . 13  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  <-> 
( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  g : ( 1 ... n ) -1-1-onto-> A )  /\  ( x  =  (  seq 1
(  +  ,  G
) `  m )  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) ) ) )
56 simpll 761 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  ->  ph )
5756, 11sylan 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
58 fveq2 5870 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  (
f `  n )  =  ( f `  j ) )
5958csbeq1d 3372 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  j  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  j )  /  k ]_ B )
6059cbvmptv 4498 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
f `  j )  /  k ]_ B
)
6127, 60eqtri 2475 . . . . . . . . . . . . . . . 16  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
62 fveq2 5870 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  j  ->  (
g `  n )  =  ( g `  j ) )
6362csbeq1d 3372 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  [_ (
g `  n )  /  k ]_ B  =  [_ ( g `  j )  /  k ]_ B )
6463cbvmptv 4498 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  |->  [_ (
g `  n )  /  k ]_ B
)  =  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
)
65 simplr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
( m  e.  NN  /\  n  e.  NN ) )
66 simprl 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
67 simprr 767 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
g : ( 1 ... n ) -1-1-onto-> A )
689, 57, 61, 64, 65, 66, 67summolem3 13792 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
(  seq 1 (  +  ,  G ) `  m )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) )
69 eqeq12 2466 . . . . . . . . . . . . . . 15  |-  ( ( x  =  (  seq 1 (  +  ,  G ) `  m
)  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) )  -> 
( x  =  y  <-> 
(  seq 1 (  +  ,  G ) `  m )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )
7068, 69syl5ibrcom 226 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A ) )  -> 
( ( x  =  (  seq 1 (  +  ,  G ) `
 m )  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )  ->  x  =  y )
)
7170expimpd 608 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... n
)
-1-1-onto-> A )  /\  (
x  =  (  seq 1 (  +  ,  G ) `  m
)  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7255, 71syl5bi 221 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `
 m ) )  /\  ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7372exlimdvv 1782 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `
 m ) )  /\  ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7454, 73syl5bir 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  NN ) )  -> 
( ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7574rexlimdvva 2888 . . . . . . . . 9  |-  ( ph  ->  ( E. m  e.  NN  E. n  e.  NN  ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... n
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7653, 75syl5bir 222 . . . . . . . 8  |-  ( ph  ->  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) )  /\  E. n  e.  NN  E. g
( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( g `  n )  /  k ]_ B ) ) `  n ) ) )  ->  x  =  y ) )
7776expdimp 439 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. n  e.  NN  E. g ( g : ( 1 ... n ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( g `  n
)  /  k ]_ B ) ) `  n ) )  ->  x  =  y )
)
7852, 77syl5bi 221 . . . . . 6  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
7933, 78jaod 382 . . . . 5  |-  ( (
ph  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  -> 
( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
8029, 79jaodan 795 . . . 4  |-  ( (
ph  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) )  ->  x  =  y )
)
8180expimpd 608 . . 3  |-  ( ph  ->  ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
8281alrimivv 1776 . 2  |-  ( ph  ->  A. x A. y
( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
83 breq2 4409 . . . . . 6  |-  ( x  =  y  ->  (  seq m (  +  ,  F )  ~~>  x  <->  seq m
(  +  ,  F
)  ~~>  y ) )
8483anbi2d 711 . . . . 5  |-  ( x  =  y  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  ,  F )  ~~>  y ) ) )
8584rexbidv 2903 . . . 4  |-  ( x  =  y  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y ) ) )
86 eqeq1 2457 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  (  seq 1 (  +  ,  G ) `  m
)  <->  y  =  (  seq 1 (  +  ,  G ) `  m ) ) )
8786anbi2d 711 . . . . . 6  |-  ( x  =  y  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `
 m ) ) ) )
8887exbidv 1770 . . . . 5  |-  ( x  =  y  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
8988rexbidv 2903 . . . 4  |-  ( x  =  y  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )
9085, 89orbi12d 717 . . 3  |-  ( x  =  y  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  y )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) ) ) ) )
9190mo4 2348 . 2  |-  ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  <->  A. x A. y ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  F )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) ) ) )  ->  x  =  y ) )
9282, 91sylibr 216 1  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  F
)  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  G ) `  m ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371   A.wal 1444    = wceq 1446   E.wex 1665    e. wcel 1889   E*wmo 2302   E.wrex 2740   [_csb 3365    C_ wss 3406   ifcif 3883   class class class wbr 4405    |-> cmpt 4464   -1-1-onto->wf1o 5584   ` cfv 5585  (class class class)co 6295   CCcc 9542   0cc0 9544   1c1 9545    + caddc 9547   NNcn 10616   ZZcz 10944   ZZ>=cuz 11166   ...cfz 11791    seqcseq 12220    ~~> cli 13560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7961  df-oi 8030  df-card 8378  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-n0 10877  df-z 10945  df-uz 11167  df-rp 11310  df-fz 11792  df-fzo 11923  df-seq 12221  df-exp 12280  df-hash 12523  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-clim 13564
This theorem is referenced by:  fsum  13798
  Copyright terms: Public domain W3C validator