MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcn Structured version   Visualization version   GIF version

Theorem fsumcn 22481
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcn.3 𝐾 = (TopOpen‘ℂfld)
fsumcn.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcn.5 (𝜑𝐴 ∈ Fin)
fsumcn.6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)

Proof of Theorem fsumcn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . 2 𝐴𝐴
2 fsumcn.5 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3589 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 14267 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54mpteq2dv 4673 . . . . . . 7 (𝑤 = ∅ → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵))
65eleq1d 2672 . . . . . 6 (𝑤 = ∅ → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
73, 6imbi12d 333 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))))
87imbi2d 329 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))))
9 sseq1 3589 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
10 sumeq1 14267 . . . . . . . 8 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
1110mpteq2dv 4673 . . . . . . 7 (𝑤 = 𝑦 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵))
1211eleq1d 2672 . . . . . 6 (𝑤 = 𝑦 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
139, 12imbi12d 333 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))))
1413imbi2d 329 . . . 4 (𝑤 = 𝑦 → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))))
15 sseq1 3589 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
16 sumeq1 14267 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1716mpteq2dv 4673 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1817eleq1d 2672 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
1915, 18imbi12d 333 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
2019imbi2d 329 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
21 sseq1 3589 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
22 sumeq1 14267 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2322mpteq2dv 4673 . . . . . . 7 (𝑤 = 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
2423eleq1d 2672 . . . . . 6 (𝑤 = 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
2521, 24imbi12d 333 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))
2625imbi2d 329 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))))
27 sum0 14299 . . . . . . 7 Σ𝑘 ∈ ∅ 𝐵 = 0
2827mpteq2i 4669 . . . . . 6 (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
29 fsumcn.4 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
30 fsumcn.3 . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
3130cnfldtopon 22396 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
3231a1i 11 . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘ℂ))
33 0cnd 9912 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
3429, 32, 33cnmptc 21275 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾))
3528, 34syl5eqel 2692 . . . . 5 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
3635a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
37 ssun1 3738 . . . . . . . . . 10 𝑦 ⊆ (𝑦 ∪ {𝑧})
38 sstr 3576 . . . . . . . . . 10 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑦𝐴)
3937, 38mpan 702 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
4039imim1i 61 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
41 simplr 788 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → ¬ 𝑧𝑦)
42 disjsn 4192 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4341, 42sylibr 223 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∩ {𝑧}) = ∅)
44 eqidd 2611 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
452ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝐴 ∈ Fin)
46 simprl 790 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
47 ssfi 8065 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin)
4845, 46, 47syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) ∈ Fin)
49 simplll 794 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
5046sselda 3568 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
51 simplrr 797 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥𝑋)
5229adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
5331a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
54 fsumcn.6 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
55 cnf2 20863 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
5652, 53, 54, 55syl3anc 1318 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
57 eqid 2610 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
5857fmpt 6289 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
5956, 58sylibr 223 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
60 rsp 2913 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝑋 𝐵 ∈ ℂ → (𝑥𝑋𝐵 ∈ ℂ))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℂ))
6261imp 444 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘𝐴) ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
6349, 50, 51, 62syl21anc 1317 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
6443, 44, 48, 63fsumsplit 14318 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
65 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
6665unssbd 3753 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → {𝑧} ⊆ 𝐴)
67 vex 3176 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
6867snss 4259 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
6966, 68sylibr 223 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑧𝐴)
7069adantrr 749 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝑧𝐴)
7161impancom 455 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → (𝑘𝐴𝐵 ∈ ℂ))
7271ralrimiv 2948 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
7372ad2ant2rl 781 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
74 nfcsb1v 3515 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑧 / 𝑘𝐵
7574nfel1 2765 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
76 csbeq1a 3508 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
7776eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
7875, 77rspc 3276 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
7970, 73, 78sylc 63 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝑧 / 𝑘𝐵 ∈ ℂ)
80 sumsns 14323 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
8170, 79, 80syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
8281oveq2d 6565 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8364, 82eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8483anassrs 678 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8584mpteq2dva 4672 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8685adantrr 749 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
87 nfcv 2751 . . . . . . . . . . . . 13 𝑤𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)
88 nfcv 2751 . . . . . . . . . . . . . . 15 𝑥𝑦
89 nfcsb1v 3515 . . . . . . . . . . . . . . 15 𝑥𝑤 / 𝑥𝐵
9088, 89nfsum 14269 . . . . . . . . . . . . . 14 𝑥Σ𝑘𝑦 𝑤 / 𝑥𝐵
91 nfcv 2751 . . . . . . . . . . . . . 14 𝑥 +
92 nfcv 2751 . . . . . . . . . . . . . . 15 𝑥𝑧
9392, 89nfcsb 3517 . . . . . . . . . . . . . 14 𝑥𝑧 / 𝑘𝑤 / 𝑥𝐵
9490, 91, 93nfov 6575 . . . . . . . . . . . . 13 𝑥𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)
95 csbeq1a 3508 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
9695sumeq2sdv 14282 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑦 𝑤 / 𝑥𝐵)
9795csbeq2dv 3944 . . . . . . . . . . . . . 14 (𝑥 = 𝑤𝑧 / 𝑘𝐵 = 𝑧 / 𝑘𝑤 / 𝑥𝐵)
9896, 97oveq12d 6567 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
9987, 94, 98cbvmpt 4677 . . . . . . . . . . . 12 (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
10086, 99syl6eq 2660 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)))
10129ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝐽 ∈ (TopOn‘𝑋))
102 nfcv 2751 . . . . . . . . . . . . . 14 𝑤Σ𝑘𝑦 𝐵
103102, 90, 96cbvmpt 4677 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) = (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵)
104 simprr 792 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))
105103, 104syl5eqelr 2693 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
106 nfcv 2751 . . . . . . . . . . . . . 14 𝑤𝑧 / 𝑘𝐵
107106, 93, 97cbvmpt 4677 . . . . . . . . . . . . 13 (𝑥𝑋𝑧 / 𝑘𝐵) = (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵)
10869adantrr 749 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝑧𝐴)
10954ralrimiva 2949 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
110109ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
111 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑘𝑋
112111, 74nfmpt 4674 . . . . . . . . . . . . . . . 16 𝑘(𝑥𝑋𝑧 / 𝑘𝐵)
113112nfel1 2765 . . . . . . . . . . . . . . 15 𝑘(𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
11476mpteq2dv 4673 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑥𝑋𝐵) = (𝑥𝑋𝑧 / 𝑘𝐵))
115114eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
116113, 115rspc 3276 . . . . . . . . . . . . . 14 (𝑧𝐴 → (∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
117108, 110, 116sylc 63 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
118107, 117syl5eqelr 2693 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
11930addcn 22476 . . . . . . . . . . . . 13 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
120119a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
121101, 105, 118, 120cnmpt12f 21279 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
122100, 121eqeltrd 2688 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))
123122exp32 629 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
124123a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
12540, 124syl5 33 . . . . . . 7 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
126125expcom 450 . . . . . 6 𝑧𝑦 → (𝜑 → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
127126adantl 481 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜑 → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
128127a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
1298, 14, 20, 26, 36, 128findcard2s 8086 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))
1302, 129mpcom 37 . 2 (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
1311, 130mpi 20 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  csb 3499  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815   + caddc 9818  Σcsu 14264  TopOpenctopn 15905  fldccnfld 19567  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937
This theorem is referenced by:  fsum2cn  22482  lebnumlem2  22569  plycn  23821  psercn2  23981  knoppcnlem11  31663  fsumcnf  38203
  Copyright terms: Public domain W3C validator