MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcn Structured version   Visualization version   Unicode version

Theorem fsumcn 21980
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcn.3  |-  K  =  ( TopOpen ` fld )
fsumcn.4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
fsumcn.5  |-  ( ph  ->  A  e.  Fin )
fsumcn.6  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
Assertion
Ref Expression
fsumcn  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, k, A    k, J, x    ph, k, x    k, K, x    k, X, x
Allowed substitution hints:    B( x, k)

Proof of Theorem fsumcn
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3437 . 2  |-  A  C_  A
2 fsumcn.5 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3439 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 sumeq1 13832 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
54mpteq2dv 4483 . . . . . . 7  |-  ( w  =  (/)  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  (/)  B ) )
65eleq1d 2533 . . . . . 6  |-  ( w  =  (/)  ->  ( ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K )  <->  ( x  e.  X  |->  sum_ k  e.  (/)  B )  e.  ( J  Cn  K
) ) )
73, 6imbi12d 327 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) )  <-> 
( (/)  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) ) ) )
87imbi2d 323 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) ) )  <->  ( ph  ->  ( (/)  C_  A  -> 
( x  e.  X  |-> 
sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) ) ) ) )
9 sseq1 3439 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  A  <->  y  C_  A ) )
10 sumeq1 13832 . . . . . . . 8  |-  ( w  =  y  ->  sum_ k  e.  w  B  =  sum_ k  e.  y  B )
1110mpteq2dv 4483 . . . . . . 7  |-  ( w  =  y  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  y  B )
)
1211eleq1d 2533 . . . . . 6  |-  ( w  =  y  ->  (
( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )
139, 12imbi12d 327 . . . . 5  |-  ( w  =  y  ->  (
( w  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K ) )  <->  ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) ) )
1413imbi2d 323 . . . 4  |-  ( w  =  y  ->  (
( ph  ->  ( w 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) ) )  <->  ( ph  ->  ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) ) ) )
15 sseq1 3439 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
16 sumeq1 13832 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
1716mpteq2dv 4483 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B ) )
1817eleq1d 2533 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K
)  <->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K ) ) )
1915, 18imbi12d 327 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) )  <-> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) )
2019imbi2d 323 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( w  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K ) ) )  <->  ( ph  ->  ( ( y  u. 
{ z } ) 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) ) )
21 sseq1 3439 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
22 sumeq1 13832 . . . . . . . 8  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
2322mpteq2dv 4483 . . . . . . 7  |-  ( w  =  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  A  B )
)
2423eleq1d 2533 . . . . . 6  |-  ( w  =  A  ->  (
( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) )
2521, 24imbi12d 327 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K ) )  <->  ( A  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) ) )
2625imbi2d 323 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K ) ) )  <->  ( ph  ->  ( A  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  A  B
)  e.  ( J  Cn  K ) ) ) ) )
27 sum0 13864 . . . . . . 7  |-  sum_ k  e.  (/)  B  =  0
2827mpteq2i 4479 . . . . . 6  |-  ( x  e.  X  |->  sum_ k  e.  (/)  B )  =  ( x  e.  X  |->  0 )
29 fsumcn.4 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
30 fsumcn.3 . . . . . . . . 9  |-  K  =  ( TopOpen ` fld )
3130cnfldtopon 21881 . . . . . . . 8  |-  K  e.  (TopOn `  CC )
3231a1i 11 . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
33 0cnd 9654 . . . . . . 7  |-  ( ph  ->  0  e.  CC )
3429, 32, 33cnmptc 20754 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  0 )  e.  ( J  Cn  K ) )
3528, 34syl5eqel 2553 . . . . 5  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) )
3635a1d 25 . . . 4  |-  ( ph  ->  ( (/)  C_  A  -> 
( x  e.  X  |-> 
sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) ) )
37 ssun1 3588 . . . . . . . . . 10  |-  y  C_  ( y  u.  {
z } )
38 sstr 3426 . . . . . . . . . 10  |-  ( ( y  C_  ( y  u.  { z } )  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
y  C_  A )
3937, 38mpan 684 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  A  ->  y  C_  A )
4039imim1i 59 . . . . . . . 8  |-  ( ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( ( y  u.  { z } )  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )
41 simplr 770 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  -.  z  e.  y
)
42 disjsn 4023 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
4341, 42sylibr 217 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( y  i^i  {
z } )  =  (/) )
44 eqidd 2472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( y  u.  {
z } )  =  ( y  u.  {
z } ) )
452ad2antrr 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  A  e.  Fin )
46 simprl 772 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( y  u.  {
z } )  C_  A )
47 ssfi 7810 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A )  ->  (
y  u.  { z } )  e.  Fin )
4845, 46, 47syl2anc 673 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( y  u.  {
z } )  e. 
Fin )
49 simplll 776 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( (
y  u.  { z } )  C_  A  /\  x  e.  X
) )  /\  k  e.  ( y  u.  {
z } ) )  ->  ph )
5046sselda 3418 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( (
y  u.  { z } )  C_  A  /\  x  e.  X
) )  /\  k  e.  ( y  u.  {
z } ) )  ->  k  e.  A
)
51 simplrr 779 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( (
y  u.  { z } )  C_  A  /\  x  e.  X
) )  /\  k  e.  ( y  u.  {
z } ) )  ->  x  e.  X
)
5229adantr 472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  A )  ->  J  e.  (TopOn `  X )
)
5331a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  A )  ->  K  e.  (TopOn `  CC )
)
54 fsumcn.6 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
55 cnf2 20342 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  CC )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )  ->  ( x  e.  X  |->  B ) : X --> CC )
5652, 53, 54, 55syl3anc 1292 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B ) : X --> CC )
57 eqid 2471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
5857fmpt 6058 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. x  e.  X  B  e.  CC  <->  ( x  e.  X  |->  B ) : X --> CC )
5956, 58sylibr 217 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  A )  ->  A. x  e.  X  B  e.  CC )
60 rsp 2773 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. x  e.  X  B  e.  CC  ->  ( x  e.  X  ->  B  e.  CC ) )
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  ->  B  e.  CC )
)
6261imp 436 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  A )  /\  x  e.  X )  ->  B  e.  CC )
6349, 50, 51, 62syl21anc 1291 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( (
y  u.  { z } )  C_  A  /\  x  e.  X
) )  /\  k  e.  ( y  u.  {
z } ) )  ->  B  e.  CC )
6443, 44, 48, 63fsumsplit 13883 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  sum_ k  e.  ( y  u.  { z } ) B  =  (
sum_ k  e.  y  B  +  sum_ k  e.  { z } B
) )
65 simpr 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( y  u.  {
z } )  C_  A )  ->  (
y  u.  { z } )  C_  A
)
6665unssbd 3603 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( y  u.  {
z } )  C_  A )  ->  { z }  C_  A )
67 vex 3034 . . . . . . . . . . . . . . . . . . . . 21  |-  z  e. 
_V
6867snss 4087 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  A  <->  { z }  C_  A )
6966, 68sylibr 217 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( y  u.  {
z } )  C_  A )  ->  z  e.  A )
7069adantrr 731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
z  e.  A )
7161impancom 447 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  A  ->  B  e.  CC )
)
7271ralrimiv 2808 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  X )  ->  A. k  e.  A  B  e.  CC )
7372ad2ant2rl 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  A. k  e.  A  B  e.  CC )
74 nfcsb1v 3365 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ k [_ z  /  k ]_ B
7574nfel1 2626 . . . . . . . . . . . . . . . . . . . 20  |-  F/ k
[_ z  /  k ]_ B  e.  CC
76 csbeq1a 3358 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
7776eleq1d 2533 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  z  ->  ( B  e.  CC  <->  [_ z  / 
k ]_ B  e.  CC ) )
7875, 77rspc 3130 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ z  /  k ]_ B  e.  CC )
)
7970, 73, 78sylc 61 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  [_ z  /  k ]_ B  e.  CC )
80 sumsns 13888 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  A  /\  [_ z  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
z } B  = 
[_ z  /  k ]_ B )
8170, 79, 80syl2anc 673 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  sum_ k  e.  { z } B  =  [_ z  /  k ]_ B
)
8281oveq2d 6324 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  -> 
( sum_ k  e.  y  B  +  sum_ k  e.  { z } B
)  =  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )
8364, 82eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  x  e.  X ) )  ->  sum_ k  e.  ( y  u.  { z } ) B  =  (
sum_ k  e.  y  B  +  [_ z  /  k ]_ B
) )
8483anassrs 660 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  z  e.  y
)  /\  ( y  u.  { z } ) 
C_  A )  /\  x  e.  X )  -> 
sum_ k  e.  ( y  u.  { z } ) B  =  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
) )
8584mpteq2dva 4482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( y  u.  {
z } )  C_  A )  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  =  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
) ) )
8685adantrr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  =  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) ) )
87 nfcv 2612 . . . . . . . . . . . . 13  |-  F/_ w
( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
)
88 nfcv 2612 . . . . . . . . . . . . . . 15  |-  F/_ x
y
89 nfcsb1v 3365 . . . . . . . . . . . . . . 15  |-  F/_ x [_ w  /  x ]_ B
9088, 89nfsum 13834 . . . . . . . . . . . . . 14  |-  F/_ x sum_ k  e.  y  [_ w  /  x ]_ B
91 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ x  +
92 nfcv 2612 . . . . . . . . . . . . . . 15  |-  F/_ x
z
9392, 89nfcsb 3367 . . . . . . . . . . . . . 14  |-  F/_ x [_ z  /  k ]_ [_ w  /  x ]_ B
9490, 91, 93nfov 6334 . . . . . . . . . . . . 13  |-  F/_ x
( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B )
95 csbeq1a 3358 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
9695sumeq2sdv 13847 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  sum_ k  e.  y  B  =  sum_ k  e.  y  [_ w  /  x ]_ B
)
9795csbeq2dv 3785 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  [_ z  /  k ]_ B  =  [_ z  /  k ]_ [_ w  /  x ]_ B )
9896, 97oveq12d 6326 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  ( sum_ k  e.  y  B  +  [_ z  / 
k ]_ B )  =  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )
9987, 94, 98cbvmpt 4487 . . . . . . . . . . . 12  |-  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )  =  ( w  e.  X  |->  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )
10086, 99syl6eq 2521 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  =  ( w  e.  X  |->  ( sum_ k  e.  y  [_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) ) )
10129ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  J  e.  (TopOn `  X ) )
102 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ w sum_ k  e.  y  B
103102, 90, 96cbvmpt 4487 . . . . . . . . . . . . 13  |-  ( x  e.  X  |->  sum_ k  e.  y  B )  =  ( w  e.  X  |->  sum_ k  e.  y 
[_ w  /  x ]_ B )
104 simprr 774 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )
105103, 104syl5eqelr 2554 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( w  e.  X  |->  sum_ k  e.  y  [_ w  /  x ]_ B )  e.  ( J  Cn  K
) )
106 nfcv 2612 . . . . . . . . . . . . . 14  |-  F/_ w [_ z  /  k ]_ B
107106, 93, 97cbvmpt 4487 . . . . . . . . . . . . 13  |-  ( x  e.  X  |->  [_ z  /  k ]_ B
)  =  ( w  e.  X  |->  [_ z  /  k ]_ [_ w  /  x ]_ B )
10869adantrr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  z  e.  A )
10954ralrimiva 2809 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
110109ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
111 nfcv 2612 . . . . . . . . . . . . . . . . 17  |-  F/_ k X
112111, 74nfmpt 4484 . . . . . . . . . . . . . . . 16  |-  F/_ k
( x  e.  X  |-> 
[_ z  /  k ]_ B )
113112nfel1 2626 . . . . . . . . . . . . . . 15  |-  F/ k ( x  e.  X  |-> 
[_ z  /  k ]_ B )  e.  ( J  Cn  K )
11476mpteq2dv 4483 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  (
x  e.  X  |->  B )  =  ( x  e.  X  |->  [_ z  /  k ]_ B
) )
115114eleq1d 2533 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  (
( x  e.  X  |->  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
[_ z  /  k ]_ B )  e.  ( J  Cn  K ) ) )
116113, 115rspc 3130 . . . . . . . . . . . . . 14  |-  ( z  e.  A  ->  ( A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K )  ->  ( x  e.  X  |->  [_ z  /  k ]_ B )  e.  ( J  Cn  K ) ) )
117108, 110, 116sylc 61 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  [_ z  /  k ]_ B
)  e.  ( J  Cn  K ) )
118107, 117syl5eqelr 2554 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( w  e.  X  |->  [_ z  /  k ]_ [_ w  /  x ]_ B )  e.  ( J  Cn  K ) )
11930addcn 21975 . . . . . . . . . . . . 13  |-  +  e.  ( ( K  tX  K )  Cn  K
)
120119a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  +  e.  ( ( K  tX  K )  Cn  K
) )
121101, 105, 118, 120cnmpt12f 20758 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( w  e.  X  |->  ( sum_ k  e.  y  [_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )  e.  ( J  Cn  K
) )
122100, 121eqeltrd 2549 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  z  e.  y )  /\  ( ( y  u. 
{ z } ) 
C_  A  /\  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  e.  ( J  Cn  K ) )
123122exp32 616 . . . . . . . . 9  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  u.  {
z } )  C_  A  ->  ( ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
)  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  e.  ( J  Cn  K ) ) ) )
124123a2d 28 . . . . . . . 8  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( ( y  u. 
{ z } ) 
C_  A  ->  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( ( y  u.  { z } )  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) )
12540, 124syl5 32 . . . . . . 7  |-  ( (
ph  /\  -.  z  e.  y )  ->  (
( y  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( (
y  u.  { z } )  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K ) ) ) )
126125expcom 442 . . . . . 6  |-  ( -.  z  e.  y  -> 
( ph  ->  ( ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( ( y  u.  { z } )  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) ) )
127126adantl 473 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ph  ->  ( ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )  ->  ( (
y  u.  { z } )  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K ) ) ) ) )
128127a2d 28 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  ->  ( y  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )  ->  ( ph  ->  ( ( y  u.  { z } )  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) ) ) ) )
1298, 14, 20, 26, 36, 128findcard2s 7830 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) ) )
1302, 129mpcom 36 . 2  |-  ( ph  ->  ( A  C_  A  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) )
1311, 130mpi 20 1  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   [_csb 3349    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   {csn 3959    |-> cmpt 4454   -->wf 5585   ` cfv 5589  (class class class)co 6308   Fincfn 7587   CCcc 9555   0cc0 9557    + caddc 9560   sum_csu 13829   TopOpenctopn 15398  ℂfldccnfld 19047  TopOnctopon 19995    Cn ccn 20317    tX ctx 20652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cn 20320  df-cnp 20321  df-tx 20654  df-hmeo 20847  df-xms 21413  df-ms 21414  df-tms 21415
This theorem is referenced by:  fsum2cn  21981  lebnumlem2  22068  lebnumlem2OLD  22071  plycn  23294  psercn2  23457  fsumcnf  37405
  Copyright terms: Public domain W3C validator