MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Structured version   Visualization version   GIF version

Theorem psrass1lem 19198
Description: A group sum commutation used by psrass1 19226. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
gsumbagdiag.i (𝜑𝐼𝑉)
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑋𝐵)
psrass1lem.y (𝑘 = (𝑛𝑓𝑗) → 𝑋 = 𝑌)
Assertion
Ref Expression
psrass1lem (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)))))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑛,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑛,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑓,𝐼,𝑛,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑛,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑛,𝑥,𝑦   𝑓,𝑋,𝑛,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑛)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑛)

Proof of Theorem psrass1lem
Dummy variables 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 psrbagconf1o.1 . . . 4 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
3 gsumbagdiag.i . . . 4 (𝜑𝐼𝑉)
4 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
5 gsumbagdiag.b . . . 4 𝐵 = (Base‘𝐺)
6 gsumbagdiag.g . . . 4 (𝜑𝐺 ∈ CMnd)
71, 2, 3, 4gsumbagdiaglem 19196 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}))
8 gsumbagdiag.x . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑋𝐵)
98anassrs 678 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑋𝐵)
10 eqid 2610 . . . . . . . . . . 11 (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)
119, 10fmptd 6292 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
123adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → 𝐼𝑉)
13 ssrab2 3650 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦𝑟𝐹} ⊆ 𝐷
142, 13eqsstri 3598 . . . . . . . . . . . . 13 𝑆𝐷
154adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑆) → 𝐹𝐷)
16 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑆) → 𝑗𝑆)
171, 2psrbagconcl 19194 . . . . . . . . . . . . . 14 ((𝐼𝑉𝐹𝐷𝑗𝑆) → (𝐹𝑓𝑗) ∈ 𝑆)
1812, 15, 16, 17syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑗𝑆) → (𝐹𝑓𝑗) ∈ 𝑆)
1914, 18sseldi 3566 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → (𝐹𝑓𝑗) ∈ 𝐷)
20 eqid 2610 . . . . . . . . . . . . 13 {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} = {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}
211, 20psrbagconf1o 19195 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝐹𝑓𝑗) ∈ 𝐷) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}–1-1-onto→{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
2212, 19, 21syl2anc 691 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}–1-1-onto→{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
23 f1of 6050 . . . . . . . . . . 11 ((𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}–1-1-onto→{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
2422, 23syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
25 fco 5971 . . . . . . . . . 10 (((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵 ∧ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚))):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
2611, 24, 25syl2anc 691 . . . . . . . . 9 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚))):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
2712adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝐼𝑉)
2815adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝐹𝐷)
291psrbagf 19186 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
3027, 28, 29syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝐹:𝐼⟶ℕ0)
3130ffvelrnda 6267 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
3216adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑗𝑆)
3314, 32sseldi 3566 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑗𝐷)
341psrbagf 19186 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑗𝐷) → 𝑗:𝐼⟶ℕ0)
3527, 33, 34syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑗:𝐼⟶ℕ0)
3635ffvelrnda 6267 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
37 ssrab2 3650 . . . . . . . . . . . . . . . . . 18 {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ⊆ 𝐷
38 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
3937, 38sseldi 3566 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑚𝐷)
401psrbagf 19186 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑚𝐷) → 𝑚:𝐼⟶ℕ0)
4127, 39, 40syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑚:𝐼⟶ℕ0)
4241ffvelrnda 6267 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → (𝑚𝑧) ∈ ℕ0)
43 nn0cn 11179 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℂ)
44 nn0cn 11179 . . . . . . . . . . . . . . . 16 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
45 nn0cn 11179 . . . . . . . . . . . . . . . 16 ((𝑚𝑧) ∈ ℕ0 → (𝑚𝑧) ∈ ℂ)
46 sub32 10194 . . . . . . . . . . . . . . . 16 (((𝐹𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ ∧ (𝑚𝑧) ∈ ℂ) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4743, 44, 45, 46syl3an 1360 . . . . . . . . . . . . . . 15 (((𝐹𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0 ∧ (𝑚𝑧) ∈ ℕ0) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4831, 36, 42, 47syl3anc 1318 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4948mpteq2dva 4672 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
50 ovex 6577 . . . . . . . . . . . . . . 15 ((𝐹𝑧) − (𝑗𝑧)) ∈ V
5150a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑗𝑧)) ∈ V)
5230feqmptd 6159 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝐹 = (𝑧𝐼 ↦ (𝐹𝑧)))
5335feqmptd 6159 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
5427, 31, 36, 52, 53offval2 6812 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → (𝐹𝑓𝑗) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑗𝑧))))
5541feqmptd 6159 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑚 = (𝑧𝐼 ↦ (𝑚𝑧)))
5627, 51, 42, 54, 55offval2 6812 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑗) ∘𝑓𝑚) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))))
57 ovex 6577 . . . . . . . . . . . . . . 15 ((𝐹𝑧) − (𝑚𝑧)) ∈ V
5857a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑚𝑧)) ∈ V)
5927, 31, 42, 52, 55offval2 6812 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → (𝐹𝑓𝑚) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑚𝑧))))
6027, 58, 36, 59, 53offval2 6812 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑚) ∘𝑓𝑗) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
6149, 56, 603eqtr4d 2654 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑗) ∘𝑓𝑚) = ((𝐹𝑓𝑚) ∘𝑓𝑗))
6219adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → (𝐹𝑓𝑗) ∈ 𝐷)
631, 20psrbagconcl 19194 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ (𝐹𝑓𝑗) ∈ 𝐷𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑗) ∘𝑓𝑚) ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
6427, 62, 38, 63syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑗) ∘𝑓𝑚) ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
6561, 64eqeltrrd 2689 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑚) ∘𝑓𝑗) ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
6661mpteq2dva 4672 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)) = (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗)))
67 nfcv 2751 . . . . . . . . . . . . 13 𝑛𝑋
68 nfcsb1v 3515 . . . . . . . . . . . . 13 𝑘𝑛 / 𝑘𝑋
69 csbeq1a 3508 . . . . . . . . . . . . 13 (𝑘 = 𝑛𝑋 = 𝑛 / 𝑘𝑋)
7067, 68, 69cbvmpt 4677 . . . . . . . . . . . 12 (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑛 / 𝑘𝑋)
7170a1i 11 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑛 / 𝑘𝑋))
72 csbeq1 3502 . . . . . . . . . . 11 (𝑛 = ((𝐹𝑓𝑚) ∘𝑓𝑗) → 𝑛 / 𝑘𝑋 = ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
7365, 66, 71, 72fmptco 6303 . . . . . . . . . 10 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚))) = (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))
7473feq1d 5943 . . . . . . . . 9 ((𝜑𝑗𝑆) → (((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚))):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵))
7526, 74mpbid 221 . . . . . . . 8 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
76 eqid 2610 . . . . . . . . 9 (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) = (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
7776fmpt 6289 . . . . . . . 8 (∀𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
7875, 77sylibr 223 . . . . . . 7 ((𝜑𝑗𝑆) → ∀𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
7978r19.21bi 2916 . . . . . 6 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
8079anasss 677 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
817, 80syldan 486 . . . 4 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
821, 2, 3, 4, 5, 6, 81gsumbagdiag 19197 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
83 eqid 2610 . . . 4 (0g𝐺) = (0g𝐺)
841psrbaglefi 19193 . . . . . 6 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
853, 4, 84syl2anc 691 . . . . 5 (𝜑 → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
862, 85syl5eqel 2692 . . . 4 (𝜑𝑆 ∈ Fin)
873adantr 480 . . . . 5 ((𝜑𝑚𝑆) → 𝐼𝑉)
884adantr 480 . . . . . . 7 ((𝜑𝑚𝑆) → 𝐹𝐷)
89 simpr 476 . . . . . . 7 ((𝜑𝑚𝑆) → 𝑚𝑆)
901, 2psrbagconcl 19194 . . . . . . 7 ((𝐼𝑉𝐹𝐷𝑚𝑆) → (𝐹𝑓𝑚) ∈ 𝑆)
9187, 88, 89, 90syl3anc 1318 . . . . . 6 ((𝜑𝑚𝑆) → (𝐹𝑓𝑚) ∈ 𝑆)
9214, 91sseldi 3566 . . . . 5 ((𝜑𝑚𝑆) → (𝐹𝑓𝑚) ∈ 𝐷)
931psrbaglefi 19193 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑓𝑚) ∈ 𝐷) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ Fin)
9487, 92, 93syl2anc 691 . . . 4 ((𝜑𝑚𝑆) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ Fin)
95 xpfi 8116 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
9686, 86, 95syl2anc 691 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
97 simprl 790 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → 𝑚𝑆)
987simpld 474 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → 𝑗𝑆)
99 brxp 5071 . . . . . . 7 (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚𝑆𝑗𝑆))
10097, 98, 99sylanbrc 695 . . . . . 6 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗)
101100pm2.24d 146 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋 = (0g𝐺)))
102101impr 647 . . . 4 ((𝜑 ∧ ((𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋 = (0g𝐺))
1035, 83, 6, 86, 94, 81, 96, 102gsum2d2 18196 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
1041psrbaglefi 19193 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑓𝑗) ∈ 𝐷) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ Fin)
10512, 19, 104syl2anc 691 . . . 4 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ Fin)
106 simprl 790 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑗𝑆)
1071, 2, 3, 4gsumbagdiaglem 19196 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}))
108107simpld 474 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑚𝑆)
109 brxp 5071 . . . . . . 7 (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗𝑆𝑚𝑆))
110106, 108, 109sylanbrc 695 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚)
111110pm2.24d 146 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋 = (0g𝐺)))
112111impr 647 . . . 4 ((𝜑 ∧ ((𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋 = (0g𝐺))
1135, 83, 6, 86, 105, 80, 96, 112gsum2d2 18196 . . 3 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
11482, 103, 1133eqtr3d 2652 . 2 (𝜑 → (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
1156adantr 480 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐺 ∈ CMnd)
11681anassrs 678 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
117 eqid 2610 . . . . . . . . 9 (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) = (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
118116, 117fmptd 6292 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}⟶𝐵)
119 ovex 6577 . . . . . . . . . . . 12 (ℕ0𝑚 𝐼) ∈ V
1201, 119rabex2 4742 . . . . . . . . . . 11 𝐷 ∈ V
121120a1i 11 . . . . . . . . . 10 ((𝜑𝑚𝑆) → 𝐷 ∈ V)
122 rabexg 4739 . . . . . . . . . 10 (𝐷 ∈ V → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ V)
123 mptexg 6389 . . . . . . . . . 10 ({𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ V → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ∈ V)
124121, 122, 1233syl 18 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ∈ V)
125 funmpt 5840 . . . . . . . . . 10 Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
126125a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))
127 fvex 6113 . . . . . . . . . 10 (0g𝐺) ∈ V
128127a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → (0g𝐺) ∈ V)
129 suppssdm 7195 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ dom (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
130117dmmptss 5548 . . . . . . . . . . 11 dom (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}
131129, 130sstri 3577 . . . . . . . . . 10 ((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}
132131a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})
133 suppssfifsupp 8173 . . . . . . . . 9 ((((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) finSupp (0g𝐺))
134124, 126, 128, 94, 132, 133syl32anc 1326 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) finSupp (0g𝐺))
1355, 83, 115, 94, 118, 134gsumcl 18139 . . . . . . 7 ((𝜑𝑚𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)) ∈ 𝐵)
136 eqid 2610 . . . . . . 7 (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
137135, 136fmptd 6292 . . . . . 6 (𝜑 → (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))):𝑆𝐵)
1381, 2psrbagconf1o 19195 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆)
1393, 4, 138syl2anc 691 . . . . . . 7 (𝜑 → (𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆)
140 f1ocnv 6062 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆)
141 f1of 6050 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆𝑆)
142139, 140, 1413syl 18 . . . . . 6 (𝜑(𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆𝑆)
143 fco 5971 . . . . . 6 (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))):𝑆𝐵(𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆𝑆) → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))):𝑆𝐵)
144137, 142, 143syl2anc 691 . . . . 5 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))):𝑆𝐵)
145 coass 5571 . . . . . . . 8 (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹𝑓𝑚)) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))))
146 f1ococnv2 6076 . . . . . . . . . 10 ((𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆 → ((𝑚𝑆 ↦ (𝐹𝑓𝑚)) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ( I ↾ 𝑆))
147139, 146syl 17 . . . . . . . . 9 (𝜑 → ((𝑚𝑆 ↦ (𝐹𝑓𝑚)) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ( I ↾ 𝑆))
148147coeq2d 5206 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹𝑓𝑚)) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚)))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
149145, 148syl5eq 2656 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
150 eqidd 2611 . . . . . . . . 9 (𝜑 → (𝑚𝑆 ↦ (𝐹𝑓𝑚)) = (𝑚𝑆 ↦ (𝐹𝑓𝑚)))
151 eqidd 2611 . . . . . . . . 9 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
152 breq2 4587 . . . . . . . . . . . 12 (𝑛 = (𝐹𝑓𝑚) → (𝑥𝑟𝑛𝑥𝑟 ≤ (𝐹𝑓𝑚)))
153152rabbidv 3164 . . . . . . . . . . 11 (𝑛 = (𝐹𝑓𝑚) → {𝑥𝐷𝑥𝑟𝑛} = {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})
154 ovex 6577 . . . . . . . . . . . . 13 (𝑛𝑓𝑗) ∈ V
155 psrass1lem.y . . . . . . . . . . . . 13 (𝑘 = (𝑛𝑓𝑗) → 𝑋 = 𝑌)
156154, 155csbie 3525 . . . . . . . . . . . 12 (𝑛𝑓𝑗) / 𝑘𝑋 = 𝑌
157 oveq1 6556 . . . . . . . . . . . . 13 (𝑛 = (𝐹𝑓𝑚) → (𝑛𝑓𝑗) = ((𝐹𝑓𝑚) ∘𝑓𝑗))
158157csbeq1d 3506 . . . . . . . . . . . 12 (𝑛 = (𝐹𝑓𝑚) → (𝑛𝑓𝑗) / 𝑘𝑋 = ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
159156, 158syl5eqr 2658 . . . . . . . . . . 11 (𝑛 = (𝐹𝑓𝑚) → 𝑌 = ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
160153, 159mpteq12dv 4663 . . . . . . . . . 10 (𝑛 = (𝐹𝑓𝑚) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))
161160oveq2d 6565 . . . . . . . . 9 (𝑛 = (𝐹𝑓𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
16291, 150, 151, 161fmptco 6303 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))))
163162coeq1d 5205 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))))
164 coires1 5570 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ↾ 𝑆)
165 ssid 3587 . . . . . . . . . 10 𝑆𝑆
166 resmpt 5369 . . . . . . . . . 10 (𝑆𝑆 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
167165, 166ax-mp 5 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
168164, 167eqtri 2632 . . . . . . . 8 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
169168a1i 11 . . . . . . 7 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
170149, 163, 1693eqtr3d 2652 . . . . . 6 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
171170feq1d 5943 . . . . 5 (𝜑 → (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))):𝑆𝐵 ↔ (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))):𝑆𝐵))
172144, 171mpbid 221 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))):𝑆𝐵)
173 rabexg 4739 . . . . . . . 8 (𝐷 ∈ V → {𝑦𝐷𝑦𝑟𝐹} ∈ V)
174120, 173mp1i 13 . . . . . . 7 (𝜑 → {𝑦𝐷𝑦𝑟𝐹} ∈ V)
1752, 174syl5eqel 2692 . . . . . 6 (𝜑𝑆 ∈ V)
176 mptexg 6389 . . . . . 6 (𝑆 ∈ V → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∈ V)
177175, 176syl 17 . . . . 5 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∈ V)
178 funmpt 5840 . . . . . 6 Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
179178a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
180127a1i 11 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
181 suppssdm 7195 . . . . . . 7 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
182 eqid 2610 . . . . . . . 8 (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
183182dmmptss 5548 . . . . . . 7 dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ⊆ 𝑆
184181, 183sstri 3577 . . . . . 6 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆
185184a1i 11 . . . . 5 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)
186 suppssfifsupp 8173 . . . . 5 ((((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∧ (0g𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)) → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) finSupp (0g𝐺))
187177, 179, 180, 86, 185, 186syl32anc 1326 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) finSupp (0g𝐺))
1885, 83, 6, 86, 172, 187, 139gsumf1o 18140 . . 3 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚)))))
189162oveq2d 6565 . . 3 (𝜑 → (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
190188, 189eqtrd 2644 . 2 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
1916adantr 480 . . . . . 6 ((𝜑𝑗𝑆) → 𝐺 ∈ CMnd)
192120a1i 11 . . . . . . . 8 ((𝜑𝑗𝑆) → 𝐷 ∈ V)
193 rabexg 4739 . . . . . . . 8 (𝐷 ∈ V → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ V)
194 mptexg 6389 . . . . . . . 8 ({𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ V → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∈ V)
195192, 193, 1943syl 18 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∈ V)
196 funmpt 5840 . . . . . . . 8 Fun (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)
197196a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → Fun (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋))
198127a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → (0g𝐺) ∈ V)
199 suppssdm 7195 . . . . . . . . 9 ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ dom (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)
20010dmmptss 5548 . . . . . . . . 9 dom (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}
201199, 200sstri 3577 . . . . . . . 8 ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}
202201a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
203 suppssfifsupp 8173 . . . . . . 7 ((((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) finSupp (0g𝐺))
204195, 197, 198, 105, 202, 203syl32anc 1326 . . . . . 6 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) finSupp (0g𝐺))
2055, 83, 191, 105, 11, 204, 22gsumf1o 18140 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)))))
20673oveq2d 6565 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
207205, 206eqtrd 2644 . . . 4 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
208207mpteq2dva 4672 . . 3 (𝜑 → (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋))) = (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))))
209208oveq2d 6565 . 2 (𝜑 → (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
210114, 190, 2093eqtr4d 2654 1 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  csb 3499  wss 3540   class class class wbr 4583  cmpt 4643   I cid 4948   × cxp 5036  ccnv 5037  dom cdm 5038  cres 5040  cima 5041  ccom 5042  Fun wfun 5798  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑓 cof 6793  𝑟 cofr 6794   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  cc 9813  cle 9954  cmin 10145  cn 10897  0cn0 11169  Basecbs 15695  0gc0g 15923   Σg cgsu 15924  CMndccmn 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018
This theorem is referenced by:  psrass1  19226
  Copyright terms: Public domain W3C validator