Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iblsplitf | Structured version Visualization version GIF version |
Description: A version of iblsplit 38858 using bound-variable hypotheses instead of distinct variable conditions" (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iblsplitf.X | ⊢ Ⅎ𝑥𝜑 |
iblsplitf.vol | ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
iblsplitf.u | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
iblsplitf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
iblsplitf.a | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) |
iblsplitf.b | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
iblsplitf | ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2751 | . . 3 ⊢ Ⅎ𝑦𝐶 | |
2 | nfcsb1v 3515 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
3 | csbeq1a 3508 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
4 | 1, 2, 3 | cbvmpt 4677 | . 2 ⊢ (𝑥 ∈ 𝑈 ↦ 𝐶) = (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
5 | iblsplitf.vol | . . 3 ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) | |
6 | iblsplitf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
7 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
8 | iblsplitf.X | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
9 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑈 | |
10 | 8, 9 | nfan 1816 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝑈) |
11 | iblsplitf.c | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
12 | 11 | adantlr 747 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
13 | 12 | ex 449 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → (𝑥 ∈ 𝑈 → 𝐶 ∈ ℂ)) |
14 | 10, 13 | ralrimi 2940 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) |
15 | rspcsbela 3958 | . . . 4 ⊢ ((𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) | |
16 | 7, 14, 15 | syl2anc 691 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) |
17 | 3 | equcoms 1934 | . . . . . 6 ⊢ (𝑦 = 𝑥 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
18 | 17 | eqcomd 2616 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐶) |
19 | 2, 1, 18 | cbvmpt 4677 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
20 | iblsplitf.a | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | |
21 | 19, 20 | syl5eqel 2692 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
22 | 2, 1, 18 | cbvmpt 4677 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
23 | iblsplitf.b | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | |
24 | 22, 23 | syl5eqel 2692 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
25 | 5, 6, 16, 21, 24 | iblsplit 38858 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
26 | 4, 25 | syl5eqel 2692 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 ∀wral 2896 ⦋csb 3499 ∪ cun 3538 ∩ cin 3539 ↦ cmpt 4643 ‘cfv 5804 ℂcc 9813 0cc0 9815 vol*covol 23038 𝐿1cibl 23192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-disj 4554 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-ofr 6796 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-sum 14265 df-rest 15906 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-cmp 21000 df-ovol 23040 df-vol 23041 df-mbf 23194 df-itg1 23195 df-itg2 23196 df-ibl 23197 |
This theorem is referenced by: iblspltprt 38865 |
Copyright terms: Public domain | W3C validator |