Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummpt1n0 Structured version   Visualization version   GIF version

Theorem gsummpt1n0 18187
 Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 18188. (Contributed by AV, 11-Oct-2019.)
Hypotheses
Ref Expression
gsummpt1n0.0 0 = (0g𝐺)
gsummpt1n0.g (𝜑𝐺 ∈ Mnd)
gsummpt1n0.i (𝜑𝐼𝑊)
gsummpt1n0.x (𝜑𝑋𝐼)
gsummpt1n0.f 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
gsummpt1n0.a (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
Assertion
Ref Expression
gsummpt1n0 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑋   𝜑,𝑛   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐹(𝑛)   𝑊(𝑛)

Proof of Theorem gsummpt1n0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsummpt1n0.0 . . 3 0 = (0g𝐺)
3 gsummpt1n0.g . . 3 (𝜑𝐺 ∈ Mnd)
4 gsummpt1n0.i . . 3 (𝜑𝐼𝑊)
5 gsummpt1n0.x . . 3 (𝜑𝑋𝐼)
6 gsummpt1n0.a . . . . . 6 (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
76r19.21bi 2916 . . . . 5 ((𝜑𝑛𝐼) → 𝐴 ∈ (Base‘𝐺))
81, 2mndidcl 17131 . . . . . . 7 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
93, 8syl 17 . . . . . 6 (𝜑0 ∈ (Base‘𝐺))
109adantr 480 . . . . 5 ((𝜑𝑛𝐼) → 0 ∈ (Base‘𝐺))
117, 10ifcld 4081 . . . 4 ((𝜑𝑛𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (Base‘𝐺))
12 gsummpt1n0.f . . . 4 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
1311, 12fmptd 6292 . . 3 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1412oveq1i 6559 . . . 4 (𝐹 supp 0 ) = ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 )
15 eldifsni 4261 . . . . . . 7 (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛𝑋)
1615adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛𝑋)
17 ifnefalse 4048 . . . . . 6 (𝑛𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1816, 17syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1918, 4suppss2 7216 . . . 4 (𝜑 → ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋})
2014, 19syl5eqss 3612 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
211, 2, 3, 4, 5, 13, 20gsumpt 18184 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
22 rspcsbela 3958 . . . 4 ((𝑋𝐼 ∧ ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺)) → 𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
235, 6, 22syl2anc 691 . . 3 (𝜑𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
24 iftrue 4042 . . . . 5 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑦 / 𝑛𝐴)
25 csbeq1 3502 . . . . 5 (𝑦 = 𝑋𝑦 / 𝑛𝐴 = 𝑋 / 𝑛𝐴)
2624, 25eqtrd 2644 . . . 4 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑋 / 𝑛𝐴)
27 nfcv 2751 . . . . . 6 𝑦if(𝑛 = 𝑋, 𝐴, 0 )
28 nfv 1830 . . . . . . 7 𝑛 𝑦 = 𝑋
29 nfcsb1v 3515 . . . . . . 7 𝑛𝑦 / 𝑛𝐴
30 nfcv 2751 . . . . . . 7 𝑛 0
3128, 29, 30nfif 4065 . . . . . 6 𝑛if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 )
32 eqeq1 2614 . . . . . . 7 (𝑛 = 𝑦 → (𝑛 = 𝑋𝑦 = 𝑋))
33 csbeq1a 3508 . . . . . . 7 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
3432, 33ifbieq1d 4059 . . . . . 6 (𝑛 = 𝑦 → if(𝑛 = 𝑋, 𝐴, 0 ) = if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3527, 31, 34cbvmpt 4677 . . . . 5 (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3612, 35eqtri 2632 . . . 4 𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3726, 36fvmptg 6189 . . 3 ((𝑋𝐼𝑋 / 𝑛𝐴 ∈ (Base‘𝐺)) → (𝐹𝑋) = 𝑋 / 𝑛𝐴)
385, 23, 37syl2anc 691 . 2 (𝜑 → (𝐹𝑋) = 𝑋 / 𝑛𝐴)
3921, 38eqtrd 2644 1 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ⦋csb 3499   ∖ cdif 3537  ifcif 4036  {csn 4125   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   supp csupp 7182  Basecbs 15695  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018 This theorem is referenced by:  gsummptif1n0  18188  gsummoncoe1  19495  scmatscm  20138  idpm2idmp  20425  mp2pm2mplem4  20433  monmat2matmon  20448
 Copyright terms: Public domain W3C validator