MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptex Structured version   Visualization version   GIF version

Theorem fvmptex 6203
Description: Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6113.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptex.1 𝐹 = (𝑥𝐴𝐵)
fvmptex.2 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
Assertion
Ref Expression
fvmptex (𝐹𝐶) = (𝐺𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fvmptex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3502 . . . 4 (𝑦 = 𝐶𝑦 / 𝑥𝐵 = 𝐶 / 𝑥𝐵)
2 fvmptex.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
3 nfcv 2751 . . . . . 6 𝑦𝐵
4 nfcsb1v 3515 . . . . . 6 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3508 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 4677 . . . . 5 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
72, 6eqtri 2632 . . . 4 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
81, 7fvmpti 6190 . . 3 (𝐶𝐴 → (𝐹𝐶) = ( I ‘𝐶 / 𝑥𝐵))
91fveq2d 6107 . . . 4 (𝑦 = 𝐶 → ( I ‘𝑦 / 𝑥𝐵) = ( I ‘𝐶 / 𝑥𝐵))
10 fvmptex.2 . . . . 5 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
11 nfcv 2751 . . . . . 6 𝑦( I ‘𝐵)
12 nfcv 2751 . . . . . . 7 𝑥 I
1312, 4nffv 6110 . . . . . 6 𝑥( I ‘𝑦 / 𝑥𝐵)
145fveq2d 6107 . . . . . 6 (𝑥 = 𝑦 → ( I ‘𝐵) = ( I ‘𝑦 / 𝑥𝐵))
1511, 13, 14cbvmpt 4677 . . . . 5 (𝑥𝐴 ↦ ( I ‘𝐵)) = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
1610, 15eqtri 2632 . . . 4 𝐺 = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
17 fvex 6113 . . . 4 ( I ‘𝐶 / 𝑥𝐵) ∈ V
189, 16, 17fvmpt 6191 . . 3 (𝐶𝐴 → (𝐺𝐶) = ( I ‘𝐶 / 𝑥𝐵))
198, 18eqtr4d 2647 . 2 (𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
202dmmptss 5548 . . . . . 6 dom 𝐹𝐴
2120sseli 3564 . . . . 5 (𝐶 ∈ dom 𝐹𝐶𝐴)
2221con3i 149 . . . 4 𝐶𝐴 → ¬ 𝐶 ∈ dom 𝐹)
23 ndmfv 6128 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
2422, 23syl 17 . . 3 𝐶𝐴 → (𝐹𝐶) = ∅)
25 fvex 6113 . . . . . 6 ( I ‘𝐵) ∈ V
2625, 10dmmpti 5936 . . . . 5 dom 𝐺 = 𝐴
2726eleq2i 2680 . . . 4 (𝐶 ∈ dom 𝐺𝐶𝐴)
28 ndmfv 6128 . . . 4 𝐶 ∈ dom 𝐺 → (𝐺𝐶) = ∅)
2927, 28sylnbir 320 . . 3 𝐶𝐴 → (𝐺𝐶) = ∅)
3024, 29eqtr4d 2647 . 2 𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
3119, 30pm2.61i 175 1 (𝐹𝐶) = (𝐺𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  csb 3499  c0 3874  cmpt 4643   I cid 4948  dom cdm 5038  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812
This theorem is referenced by:  fvmptnf  6210  sumeq2ii  14271  prodeq2ii  14482
  Copyright terms: Public domain W3C validator