Step | Hyp | Ref
| Expression |
1 | | simpr 476 |
. . . . . . . 8
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) |
2 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
3 | | simplll 794 |
. . . . . . . . . . . . . 14
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) ∧ 𝑛 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶)) |
4 | | nfcv 2751 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘
I |
5 | | nfcsb1v 3515 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐵 |
6 | 4, 5 | nffv 6110 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘( I
‘⦋𝑛 /
𝑘⦌𝐵) |
7 | | nfcsb1v 3515 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝐶 |
8 | 4, 7 | nffv 6110 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘( I
‘⦋𝑛 /
𝑘⦌𝐶) |
9 | 6, 8 | nfeq 2762 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘( I
‘⦋𝑛 /
𝑘⦌𝐵) = ( I
‘⦋𝑛 /
𝑘⦌𝐶) |
10 | | csbeq1a 3508 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → 𝐵 = ⦋𝑛 / 𝑘⦌𝐵) |
11 | 10 | fveq2d 6107 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ( I ‘𝐵) = ( I ‘⦋𝑛 / 𝑘⦌𝐵)) |
12 | | csbeq1a 3508 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → 𝐶 = ⦋𝑛 / 𝑘⦌𝐶) |
13 | 12 | fveq2d 6107 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ( I ‘𝐶) = ( I ‘⦋𝑛 / 𝑘⦌𝐶)) |
14 | 11, 13 | eqeq12d 2625 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (( I ‘𝐵) = ( I ‘𝐶) ↔ ( I ‘⦋𝑛 / 𝑘⦌𝐵) = ( I ‘⦋𝑛 / 𝑘⦌𝐶))) |
15 | 9, 14 | rspc 3276 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ( I ‘⦋𝑛 / 𝑘⦌𝐵) = ( I ‘⦋𝑛 / 𝑘⦌𝐶))) |
16 | 2, 3, 15 | sylc 63 |
. . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) ∧ 𝑛 ∈ 𝐴) → ( I ‘⦋𝑛 / 𝑘⦌𝐵) = ( I ‘⦋𝑛 / 𝑘⦌𝐶)) |
17 | 16 | ifeq1da 4066 |
. . . . . . . . . . . 12
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → if(𝑛 ∈ 𝐴, ( I ‘⦋𝑛 / 𝑘⦌𝐵), ( I ‘0)) = if(𝑛 ∈ 𝐴, ( I ‘⦋𝑛 / 𝑘⦌𝐶), ( I ‘0))) |
18 | | fvif 6114 |
. . . . . . . . . . . 12
⊢ ( I
‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = if(𝑛 ∈ 𝐴, ( I ‘⦋𝑛 / 𝑘⦌𝐵), ( I ‘0)) |
19 | | fvif 6114 |
. . . . . . . . . . . 12
⊢ ( I
‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) = if(𝑛 ∈ 𝐴, ( I ‘⦋𝑛 / 𝑘⦌𝐶), ( I ‘0)) |
20 | 17, 18, 19 | 3eqtr4g 2669 |
. . . . . . . . . . 11
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
21 | 20 | mpteq2dv 4673 |
. . . . . . . . . 10
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) |
22 | 21 | fveq1d 6105 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))‘𝑥)) |
23 | | eqid 2610 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
24 | | eqid 2610 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ ( I
‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) |
25 | 23, 24 | fvmptex 6203 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)))‘𝑥) |
26 | | eqid 2610 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
27 | | eqid 2610 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ ↦ ( I
‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) = (𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
28 | 26, 27 | fvmptex 6203 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ ( I ‘if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))‘𝑥) |
29 | 22, 25, 28 | 3eqtr4g 2669 |
. . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ≥‘𝑚)) → ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))‘𝑥) = ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))‘𝑥)) |
30 | 1, 29 | seqfeq 12688 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) |
31 | 30 | breq1d 4593 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) |
32 | 31 | anbi2d 736 |
. . . . 5
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
33 | 32 | rexbidva 3031 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥))) |
34 | | simplr 788 |
. . . . . . . . . 10
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℕ) |
35 | | nnuz 11599 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
36 | 34, 35 | syl6eleq 2698 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈
(ℤ≥‘1)) |
37 | | f1of 6050 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → 𝑓:(1...𝑚)⟶𝐴) |
38 | 37 | ad2antlr 759 |
. . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑓:(1...𝑚)⟶𝐴) |
39 | | ffvelrn 6265 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)⟶𝐴 ∧ 𝑥 ∈ (1...𝑚)) → (𝑓‘𝑥) ∈ 𝐴) |
40 | 38, 39 | sylancom 698 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓‘𝑥) ∈ 𝐴) |
41 | | simplll 794 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶)) |
42 | | nfcsb1v 3515 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) |
43 | | nfcsb1v 3515 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) |
44 | 42, 43 | nfeq 2762 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) |
45 | | csbeq1a 3508 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑥) → ( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵)) |
46 | | csbeq1a 3508 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑥) → ( I ‘𝐶) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶)) |
47 | 45, 46 | eqeq12d 2625 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑥) → (( I ‘𝐵) = ( I ‘𝐶) ↔ ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶))) |
48 | 44, 47 | rspc 3276 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶))) |
49 | 40, 41, 48 | sylc 63 |
. . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶)) |
50 | | fvex 6113 |
. . . . . . . . . . . 12
⊢ (𝑓‘𝑥) ∈ V |
51 | | csbfv2g 6142 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ V → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . 11
⊢
⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵) |
53 | | csbfv2g 6142 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ V → ⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) |
54 | 50, 53 | ax-mp 5 |
. . . . . . . . . . 11
⊢
⦋(𝑓‘𝑥) / 𝑘⦌( I ‘𝐶) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶) |
55 | 49, 52, 54 | 3eqtr3g 2667 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) |
56 | | elfznn 12241 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1...𝑚) → 𝑥 ∈ ℕ) |
57 | 56 | adantl 481 |
. . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑥 ∈ ℕ) |
58 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → (𝑓‘𝑛) = (𝑓‘𝑥)) |
59 | 58 | csbeq1d 3506 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑥 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑥) / 𝑘⦌𝐵) |
60 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
61 | 59, 60 | fvmpti 6190 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) |
62 | 57, 61 | syl 17 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐵)) |
63 | 58 | csbeq1d 3506 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑥 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 = ⦋(𝑓‘𝑥) / 𝑘⦌𝐶) |
64 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐶) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
65 | 63, 64 | fvmpti 6190 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) |
66 | 57, 65 | syl 17 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥) = ( I ‘⦋(𝑓‘𝑥) / 𝑘⦌𝐶)) |
67 | 55, 62, 66 | 3eqtr4d 2654 |
. . . . . . . . 9
⊢
((((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵)‘𝑥) = ((𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)‘𝑥)) |
68 | 36, 67 | seqfveq 12687 |
. . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)) |
69 | 68 | eqeq2d 2620 |
. . . . . . 7
⊢
(((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) |
70 | 69 | pm5.32da 671 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
71 | 70 | exbidv 1837 |
. . . . 5
⊢
((∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
72 | 71 | rexbidva 3031 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
73 | 33, 72 | orbi12d 742 |
. . 3
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
74 | 73 | iotabidv 5789 |
. 2
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))))) |
75 | | df-sum 14265 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
76 | | df-sum 14265 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
77 | 74, 75, 76 | 3eqtr4g 2669 |
1
⊢
(∀𝑘 ∈
𝐴 ( I ‘𝐵) = ( I ‘𝐶) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |