Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposb Structured version   Visualization version   GIF version

Theorem mbfposb 23226
 Description: A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypothesis
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbfposb (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfposb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . . . . . . . 9 𝑥0
2 nfcv 2751 . . . . . . . . 9 𝑥
3 nffvmpt1 6111 . . . . . . . . 9 𝑥((𝑥𝐴𝐵)‘𝑦)
41, 2, 3nfbr 4629 . . . . . . . 8 𝑥0 ≤ ((𝑥𝐴𝐵)‘𝑦)
54, 3, 1nfif 4065 . . . . . . 7 𝑥if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)
6 nfcv 2751 . . . . . . 7 𝑦if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0)
7 fveq2 6103 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
87breq2d 4595 . . . . . . . 8 (𝑦 = 𝑥 → (0 ≤ ((𝑥𝐴𝐵)‘𝑦) ↔ 0 ≤ ((𝑥𝐴𝐵)‘𝑥)))
98, 7ifbieq1d 4059 . . . . . . 7 (𝑦 = 𝑥 → if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0) = if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0))
105, 6, 9cbvmpt 4677 . . . . . 6 (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0))
11 simpr 476 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
12 mbfpos.1 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
13 eqid 2610 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1413fvmpt2 6200 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1511, 12, 14syl2anc 691 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615breq2d 4595 . . . . . . . 8 ((𝜑𝑥𝐴) → (0 ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ 𝐵))
1716, 15ifbieq1d 4059 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0) = if(0 ≤ 𝐵, 𝐵, 0))
1817mpteq2dva 4672 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
1910, 18syl5eq 2656 . . . . 5 (𝜑 → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
2019adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
2112, 13fmptd 6292 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
2221adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴𝐵):𝐴⟶ℝ)
2322ffvelrnda 6267 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) ∧ 𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
24 nfcv 2751 . . . . . . . . 9 𝑦((𝑥𝐴𝐵)‘𝑥)
253, 24, 7cbvmpt 4677 . . . . . . . 8 (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴 ↦ ((𝑥𝐴𝐵)‘𝑥))
2615mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑥𝐴𝐵))
2725, 26syl5eq 2656 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴𝐵))
2827eleq1d 2672 . . . . . 6 (𝜑 → ((𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn ↔ (𝑥𝐴𝐵) ∈ MblFn))
2928biimpar 501 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
3023, 29mbfpos 23224 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
3120, 30eqeltrrd 2689 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
323nfneg 10156 . . . . . . . . 9 𝑥-((𝑥𝐴𝐵)‘𝑦)
331, 2, 32nfbr 4629 . . . . . . . 8 𝑥0 ≤ -((𝑥𝐴𝐵)‘𝑦)
3433, 32, 1nfif 4065 . . . . . . 7 𝑥if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)
35 nfcv 2751 . . . . . . 7 𝑦if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0)
367negeqd 10154 . . . . . . . . 9 (𝑦 = 𝑥 → -((𝑥𝐴𝐵)‘𝑦) = -((𝑥𝐴𝐵)‘𝑥))
3736breq2d 4595 . . . . . . . 8 (𝑦 = 𝑥 → (0 ≤ -((𝑥𝐴𝐵)‘𝑦) ↔ 0 ≤ -((𝑥𝐴𝐵)‘𝑥)))
3837, 36ifbieq1d 4059 . . . . . . 7 (𝑦 = 𝑥 → if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0) = if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0))
3934, 35, 38cbvmpt 4677 . . . . . 6 (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0))
4015negeqd 10154 . . . . . . . . 9 ((𝜑𝑥𝐴) → -((𝑥𝐴𝐵)‘𝑥) = -𝐵)
4140breq2d 4595 . . . . . . . 8 ((𝜑𝑥𝐴) → (0 ≤ -((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ -𝐵))
4241, 40ifbieq1d 4059 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0) = if(0 ≤ -𝐵, -𝐵, 0))
4342mpteq2dva 4672 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑥), -((𝑥𝐴𝐵)‘𝑥), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4439, 43syl5eq 2656 . . . . 5 (𝜑 → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4544adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
4623renegcld 10336 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) ∧ 𝑦𝐴) → -((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
4723, 29mbfneg 23223 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ -((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
4846, 47mbfpos 23224 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
4945, 48eqeltrrd 2689 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
5031, 49jca 553 . 2 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn))
5127adantr 480 . . 3 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) = (𝑥𝐴𝐵))
5221ffvelrnda 6267 . . . . 5 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
5352adantlr 747 . . . 4 (((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) ∧ 𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ∈ ℝ)
5419adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
55 simprl 790 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
5654, 55eqeltrd 2688 . . . 4 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
5744adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
58 simprr 792 . . . . 5 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
5957, 58eqeltrd 2688 . . . 4 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ if(0 ≤ -((𝑥𝐴𝐵)‘𝑦), -((𝑥𝐴𝐵)‘𝑦), 0)) ∈ MblFn)
6053, 56, 59mbfposr 23225 . . 3 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑦𝐴 ↦ ((𝑥𝐴𝐵)‘𝑦)) ∈ MblFn)
6151, 60eqeltrrd 2689 . 2 ((𝜑 ∧ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)) → (𝑥𝐴𝐵) ∈ MblFn)
6250, 61impbida 873 1 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  ℝcr 9814  0cc0 9815   ≤ cle 9954  -cneg 10146  MblFncmbf 23189 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194 This theorem is referenced by:  iblre  23366
 Copyright terms: Public domain W3C validator