Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabdiophlem2 Structured version   Visualization version   GIF version

Theorem rabdiophlem2 36384
Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypothesis
Ref Expression
rabdiophlem2.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rabdiophlem2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Distinct variable groups:   𝑢,𝑁,𝑡   𝑢,𝑀,𝑡   𝑡,𝐴
Allowed substitution hint:   𝐴(𝑢)

Proof of Theorem rabdiophlem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . . . . 6 𝑎𝐴
2 nfcsb1v 3515 . . . . . 6 𝑢𝑎 / 𝑢𝐴
3 csbeq1a 3508 . . . . . 6 (𝑢 = 𝑎𝐴 = 𝑎 / 𝑢𝐴)
41, 2, 3cbvmpt 4677 . . . . 5 (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) = (𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
54fveq1i 6104 . . . 4 ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))) = ((𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁)))
6 rabdiophlem2.1 . . . . . . 7 𝑀 = (𝑁 + 1)
76mapfzcons1cl 36299 . . . . . 6 (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑𝑚 (1...𝑁)))
87adantl 481 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑𝑚 (1...𝑁)))
9 mzpf 36317 . . . . . . . 8 ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ)
10 eqid 2610 . . . . . . . . 9 (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) = (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)
1110fmpt 6289 . . . . . . . 8 (∀𝑢 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ ↔ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ)
129, 11sylibr 223 . . . . . . 7 ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑢 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ)
1312ad2antlr 759 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → ∀𝑢 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ)
14 nfcsb1v 3515 . . . . . . . 8 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴
1514nfel1 2765 . . . . . . 7 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ
16 csbeq1a 3508 . . . . . . . 8 (𝑢 = (𝑡 ↾ (1...𝑁)) → 𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
1716eleq1d 2672 . . . . . . 7 (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝐴 ∈ ℤ ↔ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
1815, 17rspc 3276 . . . . . 6 ((𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑𝑚 (1...𝑁)) → (∀𝑢 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
198, 13, 18sylc 63 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ)
20 csbeq1 3502 . . . . . 6 (𝑎 = (𝑡 ↾ (1...𝑁)) → 𝑎 / 𝑢𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
21 eqid 2610 . . . . . 6 (𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴) = (𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
2220, 21fvmptg 6189 . . . . 5 (((𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑𝑚 (1...𝑁)) ∧ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ) → ((𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁))) = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
238, 19, 22syl2anc 691 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → ((𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁))) = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
245, 23syl5req 2657 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 = ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))))
2524mpteq2dva 4672 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) = (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))))
26 ovex 6577 . . . 4 (1...𝑀) ∈ V
2726a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑀) ∈ V)
28 fzssp1 12255 . . . . 5 (1...𝑁) ⊆ (1...(𝑁 + 1))
296oveq2i 6560 . . . . 5 (1...𝑀) = (1...(𝑁 + 1))
3028, 29sseqtr4i 3601 . . . 4 (1...𝑁) ⊆ (1...𝑀)
3130a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑁) ⊆ (1...𝑀))
32 simpr 476 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
33 mzpresrename 36331 . . 3 (((1...𝑀) ∈ V ∧ (1...𝑁) ⊆ (1...𝑀) ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3427, 31, 32, 33syl3anc 1318 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3525, 34eqeltrd 2688 1 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  csb 3499  wss 3540  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  1c1 9816   + caddc 9818  0cn0 11169  cz 11254  ...cfz 12197  mzPolycmzp 36303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-mzpcl 36304  df-mzp 36305
This theorem is referenced by:  elnn0rabdioph  36385  dvdsrabdioph  36392
  Copyright terms: Public domain W3C validator