Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequi 2363 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | |
2 | sbequi 2363 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | |
3 | 2 | equcoms 1934 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) |
4 | 1, 3 | impbid 201 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: drsb2 2366 sbcom3 2399 sbco2 2403 sbcom2 2433 sb10f 2444 sb8eu 2491 cbvralf 3141 cbvreu 3145 cbvralsv 3158 cbvrexsv 3159 cbvrab 3171 cbvreucsf 3533 cbvrabcsf 3534 sbss 4034 cbvopab1 4655 cbvmpt 4677 cbviota 5773 sb8iota 5775 cbvriota 6521 tfis 6946 tfinds 6951 findes 6988 uzind4s 11624 wl-sbcom2d-lem1 32521 wl-sb8eut 32538 wl-sbcom3 32551 sbeqi 33138 disjinfi 38375 |
Copyright terms: Public domain | W3C validator |