Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjf1 Structured version   Visualization version   GIF version

Theorem disjf1 38364
Description: A 1 to 1 mapping built from disjoint, nonempty sets . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjf1.xph 𝑥𝜑
disjf1.f 𝐹 = (𝑥𝐴𝐵)
disjf1.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjf1.n0 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
disjf1.dj (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjf1 (𝜑𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem disjf1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjf1.xph . . . . . . 7 𝑥𝜑
2 nfv 1830 . . . . . . 7 𝑥 𝑦𝐴
31, 2nfan 1816 . . . . . 6 𝑥(𝜑𝑦𝐴)
4 nfcsb1v 3515 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
5 nfcv 2751 . . . . . . 7 𝑥𝑉
64, 5nfel 2763 . . . . . 6 𝑥𝑦 / 𝑥𝐵𝑉
73, 6nfim 1813 . . . . 5 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)
8 eleq1 2676 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98anbi2d 736 . . . . . 6 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
10 csbeq1a 3508 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1110eleq1d 2672 . . . . . 6 (𝑥 = 𝑦 → (𝐵𝑉𝑦 / 𝑥𝐵𝑉))
129, 11imbi12d 333 . . . . 5 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑉) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)))
13 disjf1.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
147, 12, 13chvar 2250 . . . 4 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)
1514ralrimiva 2949 . . 3 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉)
16 inidm 3784 . . . . . . . . 9 (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = 𝑦 / 𝑥𝐵
1716eqcomi 2619 . . . . . . . 8 𝑦 / 𝑥𝐵 = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵)
1817a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵))
19 ineq2 3770 . . . . . . . 8 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵))
2019ad2antlr 759 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵))
21 disjf1.dj . . . . . . . . . 10 (𝜑Disj 𝑥𝐴 𝐵)
22 nfcv 2751 . . . . . . . . . . 11 𝑤𝐵
23 nfcsb1v 3515 . . . . . . . . . . 11 𝑥𝑤 / 𝑥𝐵
24 csbeq1a 3508 . . . . . . . . . . 11 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
2522, 23, 24cbvdisj 4563 . . . . . . . . . 10 (Disj 𝑥𝐴 𝐵Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
2621, 25sylib 207 . . . . . . . . 9 (𝜑Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
2726ad3antrrr 762 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
28 simpllr 795 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦𝐴𝑧𝐴))
29 neqne 2790 . . . . . . . . 9 𝑦 = 𝑧𝑦𝑧)
3029adantl 481 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦𝑧)
31 csbeq1 3502 . . . . . . . . 9 (𝑤 = 𝑦𝑤 / 𝑥𝐵 = 𝑦 / 𝑥𝐵)
32 csbeq1 3502 . . . . . . . . 9 (𝑤 = 𝑧𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3331, 32disji2 4569 . . . . . . . 8 ((Disj 𝑤𝐴 𝑤 / 𝑥𝐵 ∧ (𝑦𝐴𝑧𝐴) ∧ 𝑦𝑧) → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅)
3427, 28, 30, 33syl3anc 1318 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅)
3518, 20, 343eqtrd 2648 . . . . . 6 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 = ∅)
36 nfcv 2751 . . . . . . . . . . . 12 𝑥
374, 36nfne 2882 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐵 ≠ ∅
383, 37nfim 1813 . . . . . . . . . 10 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)
3910neeq1d 2841 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐵 ≠ ∅ ↔ 𝑦 / 𝑥𝐵 ≠ ∅))
409, 39imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵 ≠ ∅) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)))
41 disjf1.n0 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
4238, 40, 41chvar 2250 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)
4342adantrr 749 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 / 𝑥𝐵 ≠ ∅)
4443ad2antrr 758 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 ≠ ∅)
4544neneqd 2787 . . . . . 6 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → ¬ 𝑦 / 𝑥𝐵 = ∅)
4635, 45condan 831 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) → 𝑦 = 𝑧)
4746ex 449 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧))
4847ralrimivva 2954 . . 3 (𝜑 → ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧))
4915, 48jca 553 . 2 (𝜑 → (∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧)))
50 disjf1.f . . . 4 𝐹 = (𝑥𝐴𝐵)
51 nfcv 2751 . . . . 5 𝑦𝐵
5251, 4, 10cbvmpt 4677 . . . 4 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
5350, 52eqtri 2632 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
54 csbeq1 3502 . . 3 (𝑦 = 𝑧𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
5553, 54f1mpt 6419 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧)))
5649, 55sylibr 223 1 (𝜑𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  wne 2780  wral 2896  csb 3499  cin 3539  c0 3874  Disj wdisj 4553  cmpt 4643  1-1wf1 5801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fv 5812
This theorem is referenced by:  disjf1o  38373  meadjiunlem  39358
  Copyright terms: Public domain W3C validator