MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1t Structured version   Visualization version   GIF version

Theorem cnmpt1t 21278
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1t (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt1t
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponuni 20542 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 mpteq1 4665 . . . 4 (𝑋 = 𝐽 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
41, 2, 33syl 18 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
5 simpr 476 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥𝑋)
6 cnmpt11.a . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
7 cntop2 20855 . . . . . . . . . . 11 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ Top)
9 eqid 2610 . . . . . . . . . . 11 𝐾 = 𝐾
109toptopon 20548 . . . . . . . . . 10 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
118, 10sylib 207 . . . . . . . . 9 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
12 cnf2 20863 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋 𝐾)
131, 11, 6, 12syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑥𝑋𝐴):𝑋 𝐾)
14 eqid 2610 . . . . . . . . 9 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
1514fmpt 6289 . . . . . . . 8 (∀𝑥𝑋 𝐴 𝐾 ↔ (𝑥𝑋𝐴):𝑋 𝐾)
1613, 15sylibr 223 . . . . . . 7 (𝜑 → ∀𝑥𝑋 𝐴 𝐾)
1716r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 𝐾)
1814fvmpt2 6200 . . . . . 6 ((𝑥𝑋𝐴 𝐾) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
195, 17, 18syl2anc 691 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
20 cnmpt1t.b . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
21 cntop2 20855 . . . . . . . . . . 11 ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
2220, 21syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ Top)
23 eqid 2610 . . . . . . . . . . 11 𝐿 = 𝐿
2423toptopon 20548 . . . . . . . . . 10 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
2522, 24sylib 207 . . . . . . . . 9 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
26 cnf2 20863 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋 𝐿)
271, 25, 20, 26syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑥𝑋𝐵):𝑋 𝐿)
28 eqid 2610 . . . . . . . . 9 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2928fmpt 6289 . . . . . . . 8 (∀𝑥𝑋 𝐵 𝐿 ↔ (𝑥𝑋𝐵):𝑋 𝐿)
3027, 29sylibr 223 . . . . . . 7 (𝜑 → ∀𝑥𝑋 𝐵 𝐿)
3130r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 𝐿)
3228fvmpt2 6200 . . . . . 6 ((𝑥𝑋𝐵 𝐿) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
335, 31, 32syl2anc 691 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
3419, 33opeq12d 4348 . . . 4 ((𝜑𝑥𝑋) → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
3534mpteq2dva 4672 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
364, 35eqtr3d 2646 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
37 eqid 2610 . . . 4 𝐽 = 𝐽
38 nfcv 2751 . . . . 5 𝑦⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩
39 nffvmpt1 6111 . . . . . 6 𝑥((𝑥𝑋𝐴)‘𝑦)
40 nffvmpt1 6111 . . . . . 6 𝑥((𝑥𝑋𝐵)‘𝑦)
4139, 40nfop 4356 . . . . 5 𝑥⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩
42 fveq2 6103 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝑦))
43 fveq2 6103 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝑦))
4442, 43opeq12d 4348 . . . . 5 (𝑥 = 𝑦 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
4538, 41, 44cbvmpt 4677 . . . 4 (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑦 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
4637, 45txcnmpt 21237 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
476, 20, 46syl2anc 691 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
4836, 47eqeltrrd 2689 1 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cop 4131   cuni 4372  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-tx 21175
This theorem is referenced by:  cnmpt12f  21279  xkoinjcn  21300  txcon  21302  imasnopn  21303  imasncld  21304  imasncls  21305  ptunhmeo  21421  xkohmeo  21428  cnrehmeo  22560
  Copyright terms: Public domain W3C validator