Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xaddlem2 Structured version   Visualization version   GIF version

Theorem sge0xaddlem2 39327
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xaddlem2.a (𝜑𝐴𝑉)
sge0xaddlem2.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0xaddlem2.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
sge0xaddlem2.sb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
sge0xaddlem2.sc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
Assertion
Ref Expression
sge0xaddlem2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0xaddlem2
Dummy variables 𝑒 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . 3 𝑘𝜑
2 sge0xaddlem2.a . . 3 (𝜑𝐴𝑉)
3 0xr 9965 . . . . 5 0 ∈ ℝ*
43a1i 11 . . . 4 ((𝜑𝑘𝐴) → 0 ∈ ℝ*)
5 pnfxr 9971 . . . . 5 +∞ ∈ ℝ*
65a1i 11 . . . 4 ((𝜑𝑘𝐴) → +∞ ∈ ℝ*)
7 rge0ssre 12151 . . . . . . 7 (0[,)+∞) ⊆ ℝ
8 sge0xaddlem2.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
97, 8sseldi 3566 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
10 sge0xaddlem2.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
117, 10sseldi 3566 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
129, 11readdcld 9948 . . . . 5 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ)
1312rexrd 9968 . . . 4 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ*)
14 icossicc 12131 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
1514, 8sseldi 3566 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
16 xrge0ge0 38504 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
1715, 16syl 17 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
1814, 10sseldi 3566 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
19 xrge0ge0 38504 . . . . . 6 (𝐶 ∈ (0[,]+∞) → 0 ≤ 𝐶)
2018, 19syl 17 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
219, 11, 17, 20addge0d 10482 . . . 4 ((𝜑𝑘𝐴) → 0 ≤ (𝐵 + 𝐶))
2212ltpnfd 11831 . . . 4 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) < +∞)
234, 6, 13, 21, 22elicod 12095 . . 3 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ (0[,)+∞))
241, 2, 23sge0revalmpt 39271 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
25 rexadd 11937 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
269, 11, 25syl2anc 691 . . . 4 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2726mpteq2dva 4672 . . 3 (𝜑 → (𝑘𝐴 ↦ (𝐵 +𝑒 𝐶)) = (𝑘𝐴 ↦ (𝐵 + 𝐶)))
2827fveq2d 6107 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
29 sge0xaddlem2.sb . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
30 sge0xaddlem2.sc . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
31 rexadd 11937 . . . 4 (((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
3229, 30, 31syl2anc 691 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
331, 2, 8sge0revalmpt 39271 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
341, 2, 10sge0revalmpt 39271 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
3533, 34oveq12d 6567 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
3633eqcomd 2616 . . . . . . 7 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = (Σ^‘(𝑘𝐴𝐵)))
3736, 29eqeltrd 2688 . . . . . 6 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
3834, 30eqeltrrd 2689 . . . . . 6 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
3937, 38readdcld 9948 . . . . 5 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ)
4039rexrd 9968 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ*)
41 elinel2 3762 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
4241adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
43 simpll 786 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
44 elpwinss 38241 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
4544adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝐴)
46 simpr 476 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
4745, 46sseldd 3569 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝐴)
4847adantll 746 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
4943, 48, 9syl2anc 691 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
5043, 48, 11syl2anc 691 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℝ)
5149, 50readdcld 9948 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ ℝ)
5242, 51fsumrecl 14312 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ)
5352rexrd 9968 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
5453ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
55 eqid 2610 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))
5655rnmptss 6299 . . . . . 6 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
5754, 56syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
58 supxrcl 12017 . . . . 5 (ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
5957, 58syl 17 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
6035eqcomd 2616 . . . . . . 7 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
6160adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
62 nfv 1830 . . . . . . . 8 𝑘(𝜑𝑒 ∈ ℝ+)
632adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → 𝐴𝑉)
6415adantlr 747 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
65 rphalfcl 11734 . . . . . . . . 9 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
6665adantl 481 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 2) ∈ ℝ+)
6729adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
6862, 63, 64, 66, 67sge0ltfirpmpt2 39319 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑢 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)))
6918adantlr 747 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
7030adantr 480 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ ℝ+) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
7162, 63, 69, 66, 70sge0ltfirpmpt2 39319 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
72713ad2ant1 1075 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → ∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
73633ad2ant1 1075 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → 𝐴𝑉)
74733ad2ant1 1075 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝐴𝑉)
75 simpl1l 1105 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝜑)
76753ad2antl1 1216 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝜑)
77 simpr 476 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗𝐴)
78 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑗𝐴)
79 nfcsb1v 3515 . . . . . . . . . . . . . . . . . 18 𝑘𝑗 / 𝑘𝐵
8079nfel1 2765 . . . . . . . . . . . . . . . . 17 𝑘𝑗 / 𝑘𝐵 ∈ (0[,)+∞)
8178, 80nfim 1813 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
82 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
8382anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
84 csbeq1a 3508 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
8584eleq1d 2672 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐵 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐵 ∈ (0[,)+∞)))
8683, 85imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))))
8781, 86, 8chvar 2250 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
8876, 77, 87syl2anc 691 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
89 nfcsb1v 3515 . . . . . . . . . . . . . . . . . 18 𝑘𝑗 / 𝑘𝐶
9089nfel1 2765 . . . . . . . . . . . . . . . . 17 𝑘𝑗 / 𝑘𝐶 ∈ (0[,)+∞)
9178, 90nfim 1813 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
92 csbeq1a 3508 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
9392eleq1d 2672 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐶 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,)+∞)))
9483, 93imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞)) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))))
9591, 94, 10chvar 2250 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
9676, 77, 95syl2anc 691 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
97 simp11r 1166 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑒 ∈ ℝ+)
98 simp12 1085 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢 ∈ (𝒫 𝐴 ∩ Fin))
99 elpwinss 38241 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢𝐴)
10098, 99syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢𝐴)
101 elinel2 3762 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢 ∈ Fin)
1021013ad2ant2 1076 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → 𝑢 ∈ Fin)
1031023ad2ant1 1075 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢 ∈ Fin)
104 simp2 1055 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣 ∈ (𝒫 𝐴 ∩ Fin))
105 elpwinss 38241 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣𝐴)
106104, 105syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣𝐴)
107 elinel2 3762 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣 ∈ Fin)
1081073ad2ant2 1076 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣 ∈ Fin)
109 simp13 1086 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)))
110 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑗𝐵
111110, 79, 84cbvmpt 4677 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝐵) = (𝑗𝐴𝑗 / 𝑘𝐵)
112111fveq2i 6106 . . . . . . . . . . . . . . . . 17 ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵))
113 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑗𝑢
114 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑘𝑢
11584, 113, 114, 110, 79cbvsum 14273 . . . . . . . . . . . . . . . . . 18 Σ𝑘𝑢 𝐵 = Σ𝑗𝑢 𝑗 / 𝑘𝐵
116115oveq1i 6559 . . . . . . . . . . . . . . . . 17 𝑘𝑢 𝐵 + (𝑒 / 2)) = (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2))
117112, 116breq12i 4592 . . . . . . . . . . . . . . . 16 ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) ↔ (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
118117biimpi 205 . . . . . . . . . . . . . . 15 ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
119109, 118syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
120 simp3 1056 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
121 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑗𝐶
122121, 89, 92cbvmpt 4677 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝐶) = (𝑗𝐴𝑗 / 𝑘𝐶)
123122fveq2i 6106 . . . . . . . . . . . . . . . . 17 ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))
124 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑗𝑣
125 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑘𝑣
12692, 124, 125, 121, 89cbvsum 14273 . . . . . . . . . . . . . . . . . 18 Σ𝑘𝑣 𝐶 = Σ𝑗𝑣 𝑗 / 𝑘𝐶
127126oveq1i 6559 . . . . . . . . . . . . . . . . 17 𝑘𝑣 𝐶 + (𝑒 / 2)) = (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2))
128123, 127breq12i 4592 . . . . . . . . . . . . . . . 16 ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) ↔ (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
129128biimpi 205 . . . . . . . . . . . . . . 15 ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
130120, 129syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
131 simp11l 1165 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝜑)
13284, 92oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝐵 + 𝐶) = (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
133 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗𝑥
134 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝑥
135 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗(𝐵 + 𝐶)
136 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 +
13779, 136, 89nfov 6575 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)
138132, 133, 134, 135, 137cbvsum 14273 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑘𝑥 (𝐵 + 𝐶) = Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)
139138mpteq2i 4669 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
140139rneqi 5273 . . . . . . . . . . . . . . . . . . . 20 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
141140supeq1i 8236 . . . . . . . . . . . . . . . . . . 19 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < )
142141eqcomi 2619 . . . . . . . . . . . . . . . . . 18 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < )
143142a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
144143, 24eqtr4d 2647 . . . . . . . . . . . . . . . 16 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
145 ge0xaddcl 12157 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
14615, 18, 145syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
14726, 146eqeltrrd 2689 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ (0[,]+∞))
1481, 2, 147sge0clmpt 39318 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ∈ (0[,]+∞))
149144, 148eqeltrd 2688 . . . . . . . . . . . . . . 15 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) ∈ (0[,]+∞))
150131, 149syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) ∈ (0[,]+∞))
151112, 29syl5eqelr 2693 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
152131, 151syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
153123, 30syl5eqelr 2693 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
154131, 153syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
15574, 88, 96, 97, 100, 103, 106, 108, 119, 130, 150, 152, 154sge0xaddlem1 39326 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒))
156112, 123oveq12i 6561 . . . . . . . . . . . . . 14 ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)))
157141oveq1i 6559 . . . . . . . . . . . . . 14 (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒)
158156, 157breq12i 4592 . . . . . . . . . . . . 13 (((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒) ↔ ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒))
159155, 158sylibr 223 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
1601593exp 1256 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))))
161160rexlimdv 3012 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → (∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒)))
16272, 161mpd 15 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
1631623exp 1256 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))))
164163rexlimdv 3012 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (∃𝑢 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒)))
16568, 164mpd 15 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
16661, 165eqbrtrd 4605 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
16740, 59, 166xrlexaddrp 38509 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
16824eqcomd 2616 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
16943, 48, 23syl2anc 691 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ (0[,)+∞))
17042, 169sge0fsummpt 39283 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) = Σ𝑘𝑥 (𝐵 + 𝐶))
17149recnd 9947 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℂ)
17250recnd 9947 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℂ)
17342, 171, 172fsumadd 14317 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) = (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶))
174170, 173eqtrd 2644 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) = (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶))
17542, 49fsumrecl 14312 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
17642, 50fsumrecl 14312 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ ℝ)
17737adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
17838adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
179 elinel2 3762 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
180179adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
181 simpll 786 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
182 elpwinss 38241 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
183182adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑦𝐴)
184 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑦)
185183, 184sseldd 3569 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
186185adantll 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
187181, 186, 9syl2anc 691 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
188180, 187fsumrecl 14312 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ)
189188rexrd 9968 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ*)
190189ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑦 𝐵 ∈ ℝ*)
191 eqid 2610 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵)
192191rnmptss 6299 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑦 𝐵 ∈ ℝ* → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
193190, 192syl 17 . . . . . . . . . . 11 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
194193adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
195 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
196 eqidd 2611 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 = Σ𝑘𝑥 𝐵)
197 sumeq1 14267 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑥 𝐵)
198197eqeq2d 2620 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵 ↔ Σ𝑘𝑥 𝐵 = Σ𝑘𝑥 𝐵))
199198rspcev 3282 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘𝑥 𝐵 = Σ𝑘𝑥 𝐵) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
200195, 196, 199syl2anc 691 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
201175elexd 3187 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ V)
202191, 200, 201elrnmptd 38361 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵))
203 supxrub 12026 . . . . . . . . . 10 ((ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ* ∧ Σ𝑘𝑥 𝐵 ∈ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵)) → Σ𝑘𝑥 𝐵 ≤ sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
204194, 202, 203syl2anc 691 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ≤ sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
205 nfv 1830 . . . . . . . . . . . 12 𝑧𝜑
206 eqid 2610 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶)
207 elinel2 3762 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
208207adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
209 simpll 786 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝜑)
210 elpwinss 38241 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
211210adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑧𝐴)
212 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑘𝑧)
213211, 212sseldd 3569 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑘𝐴)
214213adantll 746 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝑘𝐴)
215209, 214, 11syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝐶 ∈ ℝ)
216208, 215fsumrecl 14312 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑧 𝐶 ∈ ℝ)
217216rexrd 9968 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑧 𝐶 ∈ ℝ*)
218205, 206, 217rnmptssd 38380 . . . . . . . . . . 11 (𝜑 → ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ*)
219218adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ*)
220 eqidd 2611 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 = Σ𝑘𝑥 𝐶)
221 sumeq1 14267 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → Σ𝑘𝑧 𝐶 = Σ𝑘𝑥 𝐶)
222221eqeq2d 2620 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (Σ𝑘𝑥 𝐶 = Σ𝑘𝑧 𝐶 ↔ Σ𝑘𝑥 𝐶 = Σ𝑘𝑥 𝐶))
223222rspcev 3282 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘𝑥 𝐶 = Σ𝑘𝑥 𝐶) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐶 = Σ𝑘𝑧 𝐶)
224195, 220, 223syl2anc 691 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐶 = Σ𝑘𝑧 𝐶)
225176elexd 3187 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ V)
226206, 224, 225elrnmptd 38361 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶))
227 supxrub 12026 . . . . . . . . . 10 ((ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ* ∧ Σ𝑘𝑥 𝐶 ∈ ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶)) → Σ𝑘𝑥 𝐶 ≤ sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
228219, 226, 227syl2anc 691 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ≤ sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
229175, 176, 177, 178, 204, 228le2addd 10525 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
230174, 229eqbrtrd 4605 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
231230ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
2321, 2, 147, 40sge0lefimpt 39316 . . . . . 6 (𝜑 → ((Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ↔ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))))
233231, 232mpbird 246 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
234168, 233eqbrtrd 4605 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
23540, 59, 167, 234xrletrid 11862 . . 3 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
23632, 35, 2353eqtrd 2648 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
23724, 28, 2363eqtr4d 2654 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  csb 3499  cin 3539  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954   / cdiv 10563  2c2 10947  +crp 11708   +𝑒 cxad 11820  [,)cico 12048  [,]cicc 12049  Σcsu 14264  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256
This theorem is referenced by:  sge0xadd  39328
  Copyright terms: Public domain W3C validator