MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt Structured version   Visualization version   GIF version

Theorem limcmpt 23453
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt.a (𝜑𝐴 ⊆ ℂ)
limcmpt.b (𝜑𝐵 ∈ ℂ)
limcmpt.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
limcmpt.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcmpt.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmpt (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐽(𝑧)   𝐾(𝑧)

Proof of Theorem limcmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limcmpt.j . . 3 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
2 limcmpt.k . . 3 𝐾 = (TopOpen‘ℂfld)
3 nfcv 2751 . . . 4 𝑦if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))
4 nfv 1830 . . . . 5 𝑧 𝑦 = 𝐵
5 nfcv 2751 . . . . 5 𝑧𝐶
6 nffvmpt1 6111 . . . . 5 𝑧((𝑧𝐴𝐷)‘𝑦)
74, 5, 6nfif 4065 . . . 4 𝑧if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦))
8 eqeq1 2614 . . . . 5 (𝑧 = 𝑦 → (𝑧 = 𝐵𝑦 = 𝐵))
9 fveq2 6103 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝐴𝐷)‘𝑧) = ((𝑧𝐴𝐷)‘𝑦))
108, 9ifbieq2d 4061 . . . 4 (𝑧 = 𝑦 → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
113, 7, 10cbvmpt 4677 . . 3 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑦 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
12 limcmpt.f . . . 4 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
13 eqid 2610 . . . 4 (𝑧𝐴𝐷) = (𝑧𝐴𝐷)
1412, 13fmptd 6292 . . 3 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
15 limcmpt.a . . 3 (𝜑𝐴 ⊆ ℂ)
16 limcmpt.b . . 3 (𝜑𝐵 ∈ ℂ)
171, 2, 11, 14, 15, 16ellimc 23443 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
18 elun 3715 . . . . . . . . . 10 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
19 velsn 4141 . . . . . . . . . . 11 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
2019orbi2i 540 . . . . . . . . . 10 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2118, 20bitri 263 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
22 pm5.61 745 . . . . . . . . . 10 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
2322simplbi 475 . . . . . . . . 9 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2421, 23sylanb 488 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2524adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝑧𝐴)
2624, 12sylan2 490 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝐷 ∈ ℂ)
2713fvmpt2 6200 . . . . . . 7 ((𝑧𝐴𝐷 ∈ ℂ) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2825, 26, 27syl2anc 691 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2928anassrs 678 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑧 = 𝐵) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
3029ifeq2da 4067 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑧 = 𝐵, 𝐶, 𝐷))
3130mpteq2dva 4672 . . 3 (𝜑 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)))
3231eleq1d 2672 . 2 (𝜑 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
3317, 32bitrd 267 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  cun 3538  wss 3540  ifcif 4036  {csn 4125  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  t crest 15904  TopOpenctopn 15905  fldccnfld 19567   CnP ccnp 20839   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436
This theorem is referenced by:  limcmpt2  23454  limccnp2  23462  limcco  23463
  Copyright terms: Public domain W3C validator