Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcmpt | Structured version Visualization version GIF version |
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcmpt.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
limcmpt.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
limcmpt.f | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℂ) |
limcmpt.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
limcmpt.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
limcmpt | ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmpt.j | . . 3 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
2 | limcmpt.k | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | nfcv 2751 | . . . 4 ⊢ Ⅎ𝑦if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧)) | |
4 | nfv 1830 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 = 𝐵 | |
5 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
6 | nffvmpt1 6111 | . . . . 5 ⊢ Ⅎ𝑧((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦) | |
7 | 4, 5, 6 | nfif 4065 | . . . 4 ⊢ Ⅎ𝑧if(𝑦 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦)) |
8 | eqeq1 2614 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑦 = 𝐵)) | |
9 | fveq2 6103 | . . . . 5 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧) = ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦)) | |
10 | 8, 9 | ifbieq2d 4061 | . . . 4 ⊢ (𝑧 = 𝑦 → if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧)) = if(𝑦 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦))) |
11 | 3, 7, 10 | cbvmpt 4677 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧))) = (𝑦 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑦 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦))) |
12 | limcmpt.f | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℂ) | |
13 | eqid 2610 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐷) = (𝑧 ∈ 𝐴 ↦ 𝐷) | |
14 | 12, 13 | fmptd 6292 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐷):𝐴⟶ℂ) |
15 | limcmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
16 | limcmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
17 | 1, 2, 11, 14, 15, 16 | ellimc 23443 | . 2 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
18 | elun 3715 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ {𝐵})) | |
19 | velsn 4141 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵) | |
20 | 19 | orbi2i 540 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ 𝐴 ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵)) |
21 | 18, 20 | bitri 263 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵)) |
22 | pm5.61 745 | . . . . . . . . . 10 ⊢ (((𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵)) | |
23 | 22 | simplbi 475 | . . . . . . . . 9 ⊢ (((𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ 𝐴) |
24 | 21, 23 | sylanb 488 | . . . . . . . 8 ⊢ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ 𝐴) |
25 | 24 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝑧 ∈ 𝐴) |
26 | 24, 12 | sylan2 490 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝐷 ∈ ℂ) |
27 | 13 | fvmpt2 6200 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝐷 ∈ ℂ) → ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧) = 𝐷) |
28 | 25, 26, 27 | syl2anc 691 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧) = 𝐷) |
29 | 28 | anassrs 678 | . . . . 5 ⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑧 = 𝐵) → ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧) = 𝐷) |
30 | 29 | ifeq2da 4067 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧)) = if(𝑧 = 𝐵, 𝐶, 𝐷)) |
31 | 30 | mpteq2dva 4672 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷))) |
32 | 31 | eleq1d 2672 | . 2 ⊢ (𝜑 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
33 | 17, 32 | bitrd 267 | 1 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∪ cun 3538 ⊆ wss 3540 ifcif 4036 {csn 4125 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ↾t crest 15904 TopOpenctopn 15905 ℂfldccnfld 19567 CnP ccnp 20839 limℂ climc 23432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fi 8200 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-fz 12198 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-plusg 15781 df-mulr 15782 df-starv 15783 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-rest 15906 df-topn 15907 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-cnfld 19568 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-cnp 20842 df-xms 21935 df-ms 21936 df-limc 23436 |
This theorem is referenced by: limcmpt2 23454 limccnp2 23462 limcco 23463 |
Copyright terms: Public domain | W3C validator |