Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  feqresmpt Structured version   Visualization version   GIF version

Theorem feqresmpt 6160
 Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
feqmptd.1 (𝜑𝐹:𝐴𝐵)
feqresmpt.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
feqresmpt (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem feqresmpt
StepHypRef Expression
1 feqmptd.1 . . . 4 (𝜑𝐹:𝐴𝐵)
2 feqresmpt.2 . . . 4 (𝜑𝐶𝐴)
31, 2fssresd 5984 . . 3 (𝜑 → (𝐹𝐶):𝐶𝐵)
43feqmptd 6159 . 2 (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ ((𝐹𝐶)‘𝑥)))
5 fvres 6117 . . 3 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
65mpteq2ia 4668 . 2 (𝑥𝐶 ↦ ((𝐹𝐶)‘𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥))
74, 6syl6eq 2660 1 (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ⊆ wss 3540   ↦ cmpt 4643   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812 This theorem is referenced by:  pwfseqlem5  9364  swrd0val  13273  gsumpt  18184  dpjidcl  18280  regsumsupp  19787  tsmsxplem2  21767  dvmulbr  23508  dvlip  23560  lhop1lem  23580  loglesqrt  24299  jensenlem1  24513  jensen  24515  amgm  24517  gsumle  29110  coinflippv  29872  ftc1cnnclem  32653  dvasin  32666  dvacos  32667  dvreasin  32668  dvreacos  32669  areacirclem1  32670  itgperiod  38873  fourierdlem69  39068  fourierdlem73  39072  fourierdlem74  39073  fourierdlem75  39074  fourierdlem76  39075  fourierdlem81  39080  fourierdlem85  39084  fourierdlem88  39087  fourierdlem92  39091  fourierdlem97  39096  fourierdlem100  39099  fourierdlem101  39100  fourierdlem103  39102  fourierdlem104  39103  fourierdlem107  39106  fourierdlem111  39110  fourierdlem112  39111  fouriersw  39124  sge0tsms  39273  sge0resrnlem  39296  meadjiunlem  39358  omeunle  39406  isomenndlem  39420  pfxres  40251  ushgredgedga  40456  ushgredgedgaloop  40458
 Copyright terms: Public domain W3C validator