Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnclem Unicode version

Theorem ftc1cnnclem 26177
Description: Lemma for ftc1cnnc 26178; cf. ftc1lem4 19876. The stronger assumptions of ftc1cn 19880 are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1cnnc.a  |-  ( ph  ->  A  e.  RR )
ftc1cnnc.b  |-  ( ph  ->  B  e.  RR )
ftc1cnnc.le  |-  ( ph  ->  A  <_  B )
ftc1cnnc.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
ftc1cnnc.i  |-  ( ph  ->  F  e.  L ^1 )
ftc1cnnclem.c  |-  ( ph  ->  c  e.  ( A (,) B ) )
ftc1cnnclem.h  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { c } )  |->  ( ( ( G `  z
)  -  ( G `
 c ) )  /  ( z  -  c ) ) )
ftc1cnnclem.e  |-  ( ph  ->  E  e.  RR+ )
ftc1cnnclem.r  |-  ( ph  ->  R  e.  RR+ )
ftc1cnnclem.fc  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( abs `  ( y  -  c ) )  < 
R  ->  ( abs `  ( ( F `  y )  -  ( F `  c )
) )  <  E
) )
ftc1cnnclem.x1  |-  ( ph  ->  X  e.  ( A [,] B ) )
ftc1cnnclem.x2  |-  ( ph  ->  ( abs `  ( X  -  c )
)  <  R )
ftc1cnnclem.y1  |-  ( ph  ->  Y  e.  ( A [,] B ) )
ftc1cnnclem.y2  |-  ( ph  ->  ( abs `  ( Y  -  c )
)  <  R )
Assertion
Ref Expression
ftc1cnnclem  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  c )
) )  <  E
)
Distinct variable groups:    x, y,
z, t, A    x, B, y, z, t    x, F, y, z, t    ph, x, y, z, t    y, G, z    x, c, y, z, t    x, X, z, t    y, E, t    y, H    x, Y, t    y, R
Allowed substitution hints:    ph( c)    A( c)    B( c)    R( x, z, t, c)    E( x, z, c)    F( c)    G( x, t, c)    H( x, z, t, c)    X( y, c)    Y( y, z, c)

Proof of Theorem ftc1cnnclem
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1cnnc.a . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  RR )
2 ftc1cnnc.b . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR )
3 iccssre 10948 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A [,] B
)  C_  RR )
5 ftc1cnnclem.x1 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  ( A [,] B ) )
64, 5sseldd 3309 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  RR )
7 ftc1cnnclem.y1 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  ( A [,] B ) )
84, 7sseldd 3309 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR )
9 ltle 9119 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X  <  Y  ->  X  <_  Y )
)
106, 8, 9syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( X  <  Y  ->  X  <_  Y )
)
1110imp 419 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  Y )  ->  X  <_  Y )
12 ftc1cnnc.g . . . . . . . . . . 11  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
13 ftc1cnnc.le . . . . . . . . . . 11  |-  ( ph  ->  A  <_  B )
14 ssid 3327 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  ( A (,) B )
1514a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
16 ioossre 10928 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  RR
1716a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  RR )
18 ftc1cnnc.i . . . . . . . . . . 11  |-  ( ph  ->  F  e.  L ^1 )
19 ftc1cnnc.f . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
20 cncff 18876 . . . . . . . . . . . 12  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  F :
( A (,) B
) --> CC )
2119, 20syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F : ( A (,) B ) --> CC )
2212, 1, 2, 13, 15, 17, 18, 21, 5, 7ftc1lem1 19872 . . . . . . . . . 10  |-  ( (
ph  /\  X  <_  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  S. ( X (,) Y ) ( F `
 t )  _d t )
2311, 22syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  S. ( X (,) Y ) ( F `
 t )  _d t )
241rexrd 9090 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR* )
252rexrd 9090 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  RR* )
26 elicc1 10916 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( X  e.  ( A [,] B )  <->  ( X  e.  RR*  /\  A  <_  X  /\  X  <_  B
) ) )
2726biimpa 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  X  e.  ( A [,] B ) )  ->  ( X  e. 
RR*  /\  A  <_  X  /\  X  <_  B
) )
2827simp2d 970 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  X  e.  ( A [,] B ) )  ->  A  <_  X
)
2924, 25, 5, 28syl21anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  <_  X )
30 iccleub 10923 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  Y  e.  ( A [,] B
) )  ->  Y  <_  B )
3124, 25, 7, 30syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Y  <_  B )
32 df-ioo 10876 . . . . . . . . . . . . . . . . 17  |-  (,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { t  e.  RR*  |  (
u  <  t  /\  t  <  v ) } )
33 xrlelttr 10702 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR*  /\  X  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  X  /\  X  <  x )  ->  A  <  x
) )
34 xrltletr 10703 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  Y  e.  RR*  /\  B  e. 
RR* )  ->  (
( x  <  Y  /\  Y  <_  B )  ->  x  <  B
) )
3532, 32, 33, 34ixxss12 10892 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  X  /\  Y  <_  B ) )  ->  ( X (,) Y )  C_  ( A (,) B ) )
3624, 25, 29, 31, 35syl22anc 1185 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X (,) Y
)  C_  ( A (,) B ) )
3736sselda 3308 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  e.  ( A (,) B ) )
3821ffvelrnda 5829 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( F `  t )  e.  CC )
3937, 38syldan 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( F `  t )  e.  CC )
40 ftc1cnnclem.c . . . . . . . . . . . . . . 15  |-  ( ph  ->  c  e.  ( A (,) B ) )
4121, 40ffvelrnd 5830 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  c
)  e.  CC )
4241adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( F `  c )  e.  CC )
4339, 42npcand 9371 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( (
( F `  t
)  -  ( F `
 c ) )  +  ( F `  c ) )  =  ( F `  t
) )
4443itgeq2dv 19626 . . . . . . . . . . 11  |-  ( ph  ->  S. ( X (,) Y ) ( ( ( F `  t
)  -  ( F `
 c ) )  +  ( F `  c ) )  _d t  =  S. ( X (,) Y ) ( F `  t
)  _d t )
4539, 42subcld 9367 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( F `  t )  -  ( F `  c ) )  e.  CC )
46 ioombl 19412 . . . . . . . . . . . . . . 15  |-  ( X (,) Y )  e. 
dom  vol
4746a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X (,) Y
)  e.  dom  vol )
48 fvex 5701 . . . . . . . . . . . . . . 15  |-  ( F `
 t )  e. 
_V
4948a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( F `  t )  e.  _V )
5021feqmptd 5738 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  =  ( t  e.  ( A (,) B )  |->  ( F `
 t ) ) )
5150, 18eqeltrrd 2479 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  ( F `  t
) )  e.  L ^1 )
5236, 47, 49, 51iblss 19649 . . . . . . . . . . . . 13  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( F `  t
) )  e.  L ^1 )
53 fconstmpt 4880 . . . . . . . . . . . . . 14  |-  ( ( X (,) Y )  X.  { ( F `
 c ) } )  =  ( t  e.  ( X (,) Y )  |->  ( F `
 c ) )
54 mblvol 19379 . . . . . . . . . . . . . . . . 17  |-  ( ( X (,) Y )  e.  dom  vol  ->  ( vol `  ( X (,) Y ) )  =  ( vol * `  ( X (,) Y
) ) )
5546, 54ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( X (,) Y
) )  =  ( vol * `  ( X (,) Y ) )
56 ioossicc 10952 . . . . . . . . . . . . . . . . . 18  |-  ( X (,) Y )  C_  ( X [,] Y )
5756a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( X (,) Y
)  C_  ( X [,] Y ) )
58 iccmbl 19413 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  e.  dom  vol )
596, 8, 58syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X [,] Y
)  e.  dom  vol )
60 mblss 19380 . . . . . . . . . . . . . . . . . 18  |-  ( ( X [,] Y )  e.  dom  vol  ->  ( X [,] Y ) 
C_  RR )
6159, 60syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
62 mblvol 19379 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X [,] Y )  e.  dom  vol  ->  ( vol `  ( X [,] Y ) )  =  ( vol * `  ( X [,] Y
) ) )
6359, 62syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( vol `  ( X [,] Y ) )  =  ( vol * `  ( X [,] Y
) ) )
64 iccvolcl 19414 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( vol `  ( X [,] Y ) )  e.  RR )
656, 8, 64syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( vol `  ( X [,] Y ) )  e.  RR )
6663, 65eqeltrrd 2479 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( vol * `  ( X [,] Y ) )  e.  RR )
67 ovolsscl 19335 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X (,) Y
)  C_  ( X [,] Y )  /\  ( X [,] Y )  C_  RR  /\  ( vol * `  ( X [,] Y
) )  e.  RR )  ->  ( vol * `  ( X (,) Y
) )  e.  RR )
6857, 61, 66, 67syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( vol * `  ( X (,) Y ) )  e.  RR )
6955, 68syl5eqel 2488 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( vol `  ( X (,) Y ) )  e.  RR )
70 iblconst 19662 . . . . . . . . . . . . . . 15  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  ( F `  c )  e.  CC )  ->  (
( X (,) Y
)  X.  { ( F `  c ) } )  e.  L ^1 )
7147, 69, 41, 70syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X (,) Y )  X.  {
( F `  c
) } )  e.  L ^1 )
7253, 71syl5eqelr 2489 . . . . . . . . . . . . 13  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( F `  c
) )  e.  L ^1 )
73 eqid 2404 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
7473subcn 18849 . . . . . . . . . . . . . . . 16  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7574a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
7621, 36feqresmpt 5739 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F  |`  ( X (,) Y ) )  =  ( t  e.  ( X (,) Y
)  |->  ( F `  t ) ) )
77 rescncf 18880 . . . . . . . . . . . . . . . . 17  |-  ( ( X (,) Y ) 
C_  ( A (,) B )  ->  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  ( F  |`  ( X (,) Y
) )  e.  ( ( X (,) Y
) -cn-> CC ) ) )
7836, 19, 77sylc 58 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) )
7976, 78eqeltrrd 2479 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( F `  t
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
80 ioossre 10928 . . . . . . . . . . . . . . . . . 18  |-  ( X (,) Y )  C_  RR
81 ax-resscn 9003 . . . . . . . . . . . . . . . . . 18  |-  RR  C_  CC
8280, 81sstri 3317 . . . . . . . . . . . . . . . . 17  |-  ( X (,) Y )  C_  CC
83 ssid 3327 . . . . . . . . . . . . . . . . 17  |-  CC  C_  CC
84 cncfmptc 18894 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  c
)  e.  CC  /\  ( X (,) Y ) 
C_  CC  /\  CC  C_  CC )  ->  ( t  e.  ( X (,) Y )  |->  ( F `
 c ) )  e.  ( ( X (,) Y ) -cn-> CC ) )
8582, 83, 84mp3an23 1271 . . . . . . . . . . . . . . . 16  |-  ( ( F `  c )  e.  CC  ->  (
t  e.  ( X (,) Y )  |->  ( F `  c ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
8641, 85syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( F `  c
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
8773, 75, 79, 86cncfmpt2f 18897 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( F `  t )  -  ( F `  c )
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
88 cnmbf 19504 . . . . . . . . . . . . . 14  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( t  e.  ( X (,) Y ) 
|->  ( ( F `  t )  -  ( F `  c )
) )  e.  ( ( X (,) Y
) -cn-> CC ) )  -> 
( t  e.  ( X (,) Y ) 
|->  ( ( F `  t )  -  ( F `  c )
) )  e. MblFn )
8946, 87, 88sylancr 645 . . . . . . . . . . . . 13  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( F `  t )  -  ( F `  c )
) )  e. MblFn )
9039, 52, 42, 72, 89iblsubnc 26165 . . . . . . . . . . . 12  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( F `  t )  -  ( F `  c )
) )  e.  L ^1 )
9143mpteq2dva 4255 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( ( F `
 t )  -  ( F `  c ) )  +  ( F `
 c ) ) )  =  ( t  e.  ( X (,) Y )  |->  ( F `
 t ) ) )
9291, 76eqtr4d 2439 . . . . . . . . . . . . 13  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( ( F `
 t )  -  ( F `  c ) )  +  ( F `
 c ) ) )  =  ( F  |`  ( X (,) Y
) ) )
93 iblmbf 19612 . . . . . . . . . . . . . . 15  |-  ( F  e.  L ^1  ->  F  e. MblFn )
9418, 93syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e. MblFn )
95 mbfres 19489 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  ( X (,) Y )  e. 
dom  vol )  ->  ( F  |`  ( X (,) Y ) )  e. MblFn
)
9694, 46, 95sylancl 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  |`  ( X (,) Y ) )  e. MblFn )
9792, 96eqeltrd 2478 . . . . . . . . . . . 12  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( ( F `
 t )  -  ( F `  c ) )  +  ( F `
 c ) ) )  e. MblFn )
9845, 90, 42, 72, 97itgaddnc 26164 . . . . . . . . . . 11  |-  ( ph  ->  S. ( X (,) Y ) ( ( ( F `  t
)  -  ( F `
 c ) )  +  ( F `  c ) )  _d t  =  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t  +  S. ( X (,) Y ) ( F `
 c )  _d t ) )
9944, 98eqtr3d 2438 . . . . . . . . . 10  |-  ( ph  ->  S. ( X (,) Y ) ( F `
 t )  _d t  =  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t  +  S. ( X (,) Y ) ( F `
 c )  _d t ) )
10099adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  t )  _d t  =  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t  +  S. ( X (,) Y ) ( F `  c
)  _d t ) )
101 itgconst 19663 . . . . . . . . . . . . 13  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  ( F `  c )  e.  CC )  ->  S. ( X (,) Y ) ( F `  c
)  _d t  =  ( ( F `  c )  x.  ( vol `  ( X (,) Y ) ) ) )
10247, 69, 41, 101syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  S. ( X (,) Y ) ( F `
 c )  _d t  =  ( ( F `  c )  x.  ( vol `  ( X (,) Y ) ) ) )
103102adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  c )  _d t  =  ( ( F `  c
)  x.  ( vol `  ( X (,) Y
) ) ) )
1046adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  <  Y )  ->  X  e.  RR )
1058adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  <  Y )  ->  Y  e.  RR )
106 ovolioo 19415 . . . . . . . . . . . . . 14  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  X  <_  Y )  ->  ( vol * `  ( X (,) Y ) )  =  ( Y  -  X ) )
107104, 105, 11, 106syl3anc 1184 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  <  Y )  ->  ( vol * `
 ( X (,) Y ) )  =  ( Y  -  X
) )
10855, 107syl5eq 2448 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  <  Y )  ->  ( vol `  ( X (,) Y
) )  =  ( Y  -  X ) )
109108oveq2d 6056 . . . . . . . . . . 11  |-  ( (
ph  /\  X  <  Y )  ->  ( ( F `  c )  x.  ( vol `  ( X (,) Y ) ) )  =  ( ( F `  c )  x.  ( Y  -  X ) ) )
110103, 109eqtrd 2436 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  c )  _d t  =  ( ( F `  c
)  x.  ( Y  -  X ) ) )
111110oveq2d 6056 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t  +  S. ( X (,) Y ) ( F `
 c )  _d t )  =  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t  +  ( ( F `  c )  x.  ( Y  -  X ) ) ) )
11223, 100, 1113eqtrd 2440 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t  +  ( ( F `  c
)  x.  ( Y  -  X ) ) ) )
113112oveq1d 6055 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( G `  Y
)  -  ( G `
 X ) )  /  ( Y  -  X ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t  +  ( ( F `  c )  x.  ( Y  -  X )
) )  /  ( Y  -  X )
) )
114 ovex 6065 . . . . . . . . . . 11  |-  ( ( F `  t )  -  ( F `  c ) )  e. 
_V
115114a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( F `  t )  -  ( F `  c ) )  e. 
_V )
116115, 90itgcl 19628 . . . . . . . . 9  |-  ( ph  ->  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t  e.  CC )
117116adantr 452 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t  e.  CC )
11841adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( F `  c )  e.  CC )
1198, 6resubcld 9421 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  -  X
)  e.  RR )
120119recnd 9070 . . . . . . . . . 10  |-  ( ph  ->  ( Y  -  X
)  e.  CC )
121120adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  e.  CC )
122118, 121mulcld 9064 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( ( F `  c )  x.  ( Y  -  X
) )  e.  CC )
1236, 8posdifd 9569 . . . . . . . . . 10  |-  ( ph  ->  ( X  <  Y  <->  0  <  ( Y  -  X ) ) )
124123biimpa 471 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  0  <  ( Y  -  X ) )
125124gt0ne0d 9547 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  =/=  0
)
126117, 122, 121, 125divdird 9784 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t  +  ( ( F `  c )  x.  ( Y  -  X )
) )  /  ( Y  -  X )
)  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t  /  ( Y  -  X ) )  +  ( ( ( F `  c )  x.  ( Y  -  X ) )  / 
( Y  -  X
) ) ) )
127118, 121, 125divcan4d 9752 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( F `  c
)  x.  ( Y  -  X ) )  /  ( Y  -  X ) )  =  ( F `  c
) )
128127oveq2d 6056 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t  / 
( Y  -  X
) )  +  ( ( ( F `  c )  x.  ( Y  -  X )
)  /  ( Y  -  X ) ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t  /  ( Y  -  X ) )  +  ( F `  c ) ) )
129113, 126, 1283eqtrd 2440 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( G `  Y
)  -  ( G `
 X ) )  /  ( Y  -  X ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t  / 
( Y  -  X
) )  +  ( F `  c ) ) )
130129oveq1d 6055 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( ( G `  Y )  -  ( G `  X )
)  /  ( Y  -  X ) )  -  ( F `  c ) )  =  ( ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t  / 
( Y  -  X
) )  +  ( F `  c ) )  -  ( F `
 c ) ) )
131117, 121, 125divcld 9746 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t  / 
( Y  -  X
) )  e.  CC )
132131, 118pncand 9368 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t  /  ( Y  -  X )
)  +  ( F `
 c ) )  -  ( F `  c ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t  /  ( Y  -  X )
) )
133130, 132eqtrd 2436 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( ( G `  Y )  -  ( G `  X )
)  /  ( Y  -  X ) )  -  ( F `  c ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t  /  ( Y  -  X )
) )
134133fveq2d 5691 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  c )
) )  =  ( abs `  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t  / 
( Y  -  X
) ) ) )
135117, 121, 125absdivd 12212 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t  /  ( Y  -  X )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  /  ( abs `  ( Y  -  X )
) ) )
136119adantr 452 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  e.  RR )
137 0re 9047 . . . . . . 7  |-  0  e.  RR
138 ltle 9119 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( Y  -  X
)  e.  RR )  ->  ( 0  < 
( Y  -  X
)  ->  0  <_  ( Y  -  X ) ) )
139137, 136, 138sylancr 645 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( 0  <  ( Y  -  X )  ->  0  <_  ( Y  -  X
) ) )
140124, 139mpd 15 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  0  <_  ( Y  -  X ) )
141136, 140absidd 12180 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( Y  -  X
) )  =  ( Y  -  X ) )
142141oveq2d 6056 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( ( abs `  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t )  / 
( abs `  ( Y  -  X )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  /  ( Y  -  X ) ) )
143134, 135, 1423eqtrd 2440 . 2  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  c )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  /  ( Y  -  X ) ) )
144117abscld 12193 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t )  e.  RR )
14545abscld 12193 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( ( F `  t )  -  ( F `  c )
) )  e.  RR )
146 cncfss 18882 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
14781, 83, 146mp2an 654 . . . . . . . . . . 11  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
148 abscncf 18884 . . . . . . . . . . 11  |-  abs  e.  ( CC -cn-> RR )
149147, 148sselii 3305 . . . . . . . . . 10  |-  abs  e.  ( CC -cn-> CC )
150149a1i 11 . . . . . . . . 9  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
151150, 87cncfmpt1f 18896 . . . . . . . 8  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
152 cnmbf 19504 . . . . . . . 8  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( t  e.  ( X (,) Y ) 
|->  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )  -> 
( t  e.  ( X (,) Y ) 
|->  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) ) )  e. MblFn )
15346, 151, 152sylancr 645 . . . . . . 7  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) ) )  e. MblFn )
154115, 90, 153iblabsnc 26168 . . . . . 6  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) ) )  e.  L ^1 )
155145, 154itgrecl 19642 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c )
) )  _d t  e.  RR )
156155adantr 452 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c ) ) )  _d t  e.  RR )
157 ftc1cnnclem.e . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
158157rpred 10604 . . . . . 6  |-  ( ph  ->  E  e.  RR )
159119, 158remulcld 9072 . . . . 5  |-  ( ph  ->  ( ( Y  -  X )  x.  E
)  e.  RR )
160159adantr 452 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( ( Y  -  X )  x.  E )  e.  RR )
16173mulcn 18850 . . . . . . . . 9  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
162161a1i 11 . . . . . . . 8  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
163 nfcv 2540 . . . . . . . . . 10  |-  F/_ x
( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )
164 nfcv 2540 . . . . . . . . . . 11  |-  F/_ t
*
165 nfitg1 19618 . . . . . . . . . . 11  |-  F/_ t S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t
166164, 165nffv 5694 . . . . . . . . . 10  |-  F/_ t
( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )
167 eqidd 2405 . . . . . . . . . 10  |-  ( t  =  x  ->  (
* `  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t )  =  ( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t ) )
168163, 166, 167cbvmpt 4259 . . . . . . . . 9  |-  ( t  e.  ( X (,) Y )  |->  ( * `
 S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t ) )  =  ( x  e.  ( X (,) Y
)  |->  ( * `  S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t ) )
169116cjcld 11956 . . . . . . . . . 10  |-  ( ph  ->  ( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  e.  CC )
170 cncfmptc 18894 . . . . . . . . . . 11  |-  ( ( ( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  e.  CC  /\  ( X (,) Y )  C_  CC  /\  CC  C_  CC )  ->  ( x  e.  ( X (,) Y
)  |->  ( * `  S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
17182, 83, 170mp3an23 1271 . . . . . . . . . 10  |-  ( ( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  e.  CC  ->  (
x  e.  ( X (,) Y )  |->  ( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
172169, 171syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
173168, 172syl5eqel 2488 . . . . . . . 8  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( * `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
17473, 162, 173, 87cncfmpt2f 18897 . . . . . . 7  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( * `  S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t )  x.  ( ( F `
 t )  -  ( F `  c ) ) ) )  e.  ( ( X (,) Y ) -cn-> CC ) )
175 cnmbf 19504 . . . . . . 7  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( t  e.  ( X (,) Y ) 
|->  ( ( * `  S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t )  x.  ( ( F `
 t )  -  ( F `  c ) ) ) )  e.  ( ( X (,) Y ) -cn-> CC ) )  ->  ( t  e.  ( X (,) Y
)  |->  ( ( * `
 S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t )  x.  ( ( F `  t )  -  ( F `  c )
) ) )  e. MblFn
)
17646, 174, 175sylancr 645 . . . . . 6  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( * `  S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  c ) )  _d t )  x.  ( ( F `
 t )  -  ( F `  c ) ) ) )  e. MblFn
)
17745, 90, 153, 176itgabsnc 26173 . . . . 5  |-  ( ph  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  <_  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c ) ) )  _d t )
178177adantr 452 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t )  <_  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  _d t )
179 simpr 448 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  X  <  Y )
180158adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  E  e.  RR )
181 fconstmpt 4880 . . . . . . . . . 10  |-  ( ( X (,) Y )  X.  { E }
)  =  ( t  e.  ( X (,) Y )  |->  E )
182157rpcnd 10606 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  CC )
183 iblconst 19662 . . . . . . . . . . 11  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  E  e.  CC )  ->  (
( X (,) Y
)  X.  { E } )  e.  L ^1 )
18447, 69, 182, 183syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( ( X (,) Y )  X.  { E } )  e.  L ^1 )
185181, 184syl5eqelr 2489 . . . . . . . . 9  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  E )  e.  L ^1 )
186 cncfmptc 18894 . . . . . . . . . . . . 13  |-  ( ( E  e.  CC  /\  ( X (,) Y ) 
C_  CC  /\  CC  C_  CC )  ->  ( t  e.  ( X (,) Y )  |->  E )  e.  ( ( X (,) Y ) -cn-> CC ) )
18782, 83, 186mp3an23 1271 . . . . . . . . . . . 12  |-  ( E  e.  CC  ->  (
t  e.  ( X (,) Y )  |->  E )  e.  ( ( X (,) Y )
-cn-> CC ) )
188182, 187syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  E )  e.  ( ( X (,) Y
) -cn-> CC ) )
18973, 75, 188, 151cncfmpt2f 18897 . . . . . . . . . 10  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( E  -  ( abs `  ( ( F `
 t )  -  ( F `  c ) ) ) ) )  e.  ( ( X (,) Y ) -cn-> CC ) )
190 cnmbf 19504 . . . . . . . . . 10  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( t  e.  ( X (,) Y ) 
|->  ( E  -  ( abs `  ( ( F `
 t )  -  ( F `  c ) ) ) ) )  e.  ( ( X (,) Y ) -cn-> CC ) )  ->  (
t  e.  ( X (,) Y )  |->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  c )
) ) ) )  e. MblFn )
19146, 189, 190sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( E  -  ( abs `  ( ( F `
 t )  -  ( F `  c ) ) ) ) )  e. MblFn )
192180, 185, 145, 154, 191iblsubnc 26165 . . . . . . . 8  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( E  -  ( abs `  ( ( F `
 t )  -  ( F `  c ) ) ) ) )  e.  L ^1 )
193192adantr 452 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( t  e.  ( X (,) Y
)  |->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  c ) ) ) ) )  e.  L ^1 )
194 ftc1cnnclem.fc . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( abs `  ( y  -  c ) )  < 
R  ->  ( abs `  ( ( F `  y )  -  ( F `  c )
) )  <  E
) )
195194ralrimiva 2749 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  ( A (,) B ) ( ( abs `  (
y  -  c ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  E ) )
196195adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  A. y  e.  ( A (,) B
) ( ( abs `  ( y  -  c
) )  <  R  ->  ( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  E ) )
19716, 40sseldi 3306 . . . . . . . . . . . . . 14  |-  ( ph  ->  c  e.  RR )
198 ftc1cnnclem.r . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  RR+ )
199198rpred 10604 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  RR )
200197, 199resubcld 9421 . . . . . . . . . . . . 13  |-  ( ph  ->  ( c  -  R
)  e.  RR )
201200adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( c  -  R )  e.  RR )
2026adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  X  e.  RR )
203 elioore 10902 . . . . . . . . . . . . 13  |-  ( t  e.  ( X (,) Y )  ->  t  e.  RR )
204203adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  e.  RR )
205 ftc1cnnclem.x2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( abs `  ( X  -  c )
)  <  R )
2066, 197, 199absdifltd 12191 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( X  -  c )
)  <  R  <->  ( (
c  -  R )  <  X  /\  X  <  ( c  +  R
) ) ) )
207205, 206mpbid 202 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( c  -  R )  <  X  /\  X  <  ( c  +  R ) ) )
208207simpld 446 . . . . . . . . . . . . 13  |-  ( ph  ->  ( c  -  R
)  <  X )
209208adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( c  -  R )  <  X
)
210 eliooord 10926 . . . . . . . . . . . . . 14  |-  ( t  e.  ( X (,) Y )  ->  ( X  <  t  /\  t  <  Y ) )
211210adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( X  <  t  /\  t  < 
Y ) )
212211simpld 446 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  X  <  t )
213201, 202, 204, 209, 212lttrd 9187 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( c  -  R )  <  t
)
2148adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  Y  e.  RR )
215197, 199readdcld 9071 . . . . . . . . . . . . 13  |-  ( ph  ->  ( c  +  R
)  e.  RR )
216215adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( c  +  R )  e.  RR )
217211simprd 450 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  <  Y )
218 ftc1cnnclem.y2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( abs `  ( Y  -  c )
)  <  R )
2198, 197, 199absdifltd 12191 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( Y  -  c )
)  <  R  <->  ( (
c  -  R )  <  Y  /\  Y  <  ( c  +  R
) ) ) )
220218, 219mpbid 202 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( c  -  R )  <  Y  /\  Y  <  ( c  +  R ) ) )
221220simprd 450 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  <  ( c  +  R ) )
222221adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  Y  <  ( c  +  R ) )
223204, 214, 216, 217, 222lttrd 9187 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  <  ( c  +  R ) )
224197adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  c  e.  RR )
225199adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  R  e.  RR )
226204, 224, 225absdifltd 12191 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( abs `  ( t  -  c ) )  < 
R  <->  ( ( c  -  R )  < 
t  /\  t  <  ( c  +  R ) ) ) )
227213, 223, 226mpbir2and 889 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( t  -  c
) )  <  R
)
228 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  (
y  -  c )  =  ( t  -  c ) )
229228fveq2d 5691 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  ( abs `  ( y  -  c ) )  =  ( abs `  (
t  -  c ) ) )
230229breq1d 4182 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( abs `  (
y  -  c ) )  <  R  <->  ( abs `  ( t  -  c
) )  <  R
) )
231 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( y  =  t  ->  ( F `  y )  =  ( F `  t ) )
232231oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  (
( F `  y
)  -  ( F `
 c ) )  =  ( ( F `
 t )  -  ( F `  c ) ) )
233232fveq2d 5691 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  ( abs `  ( ( F `
 y )  -  ( F `  c ) ) )  =  ( abs `  ( ( F `  t )  -  ( F `  c ) ) ) )
234233breq1d 4182 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  E  <->  ( abs `  ( ( F `  t )  -  ( F `  c )
) )  <  E
) )
235230, 234imbi12d 312 . . . . . . . . . . 11  |-  ( y  =  t  ->  (
( ( abs `  (
y  -  c ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  E )  <-> 
( ( abs `  (
t  -  c ) )  <  R  -> 
( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  <  E ) ) )
236235rspcv 3008 . . . . . . . . . 10  |-  ( t  e.  ( A (,) B )  ->  ( A. y  e.  ( A (,) B ) ( ( abs `  (
y  -  c ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 c ) ) )  <  E )  ->  ( ( abs `  ( t  -  c
) )  <  R  ->  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  <  E ) ) )
23737, 196, 227, 236syl3c 59 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( ( F `  t )  -  ( F `  c )
) )  <  E
)
238 difrp 10601 . . . . . . . . . 10  |-  ( ( ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  <  E  <->  ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) ) )  e.  RR+ ) )
239145, 180, 238syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( abs `  ( ( F `
 t )  -  ( F `  c ) ) )  <  E  <->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  c )
) ) )  e.  RR+ ) )
240237, 239mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) ) )  e.  RR+ )
241240adantlr 696 . . . . . . 7  |-  ( ( ( ph  /\  X  <  Y )  /\  t  e.  ( X (,) Y
) )  ->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  c )
) ) )  e.  RR+ )
242189adantr 452 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( t  e.  ( X (,) Y
)  |->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  c ) ) ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
243179, 193, 241, 242itggt0cn 26176 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  0  <  S. ( X (,) Y
) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  c ) ) ) )  _d t )
244180, 185, 145, 154, 191itgsubnc 26166 . . . . . . . 8  |-  ( ph  ->  S. ( X (,) Y ) ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 c ) ) ) )  _d t  =  ( S. ( X (,) Y ) E  _d t  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  _d t ) )
245244adantr 452 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  c )
) ) )  _d t  =  ( S. ( X (,) Y
) E  _d t  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c ) ) )  _d t ) )
246 itgconst 19663 . . . . . . . . . . 11  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  E  e.  CC )  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y ) ) ) )
24747, 69, 182, 246syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y ) ) ) )
248247adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y
) ) ) )
249108oveq2d 6056 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( E  x.  ( vol `  ( X (,) Y ) ) )  =  ( E  x.  ( Y  -  X ) ) )
250182, 120mulcomd 9065 . . . . . . . . . 10  |-  ( ph  ->  ( E  x.  ( Y  -  X )
)  =  ( ( Y  -  X )  x.  E ) )
251250adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( E  x.  ( Y  -  X
) )  =  ( ( Y  -  X
)  x.  E ) )
252248, 249, 2513eqtrd 2440 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) E  _d t  =  ( ( Y  -  X
)  x.  E ) )
253252oveq1d 6055 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) E  _d t  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  _d t )  =  ( ( ( Y  -  X )  x.  E )  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  _d t ) )
254245, 253eqtrd 2436 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  c )
) ) )  _d t  =  ( ( ( Y  -  X
)  x.  E )  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c ) ) )  _d t ) )
255243, 254breqtrd 4196 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  0  <  ( ( ( Y  -  X )  x.  E
)  -  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  _d t ) )
256155, 159posdifd 9569 . . . . . 6  |-  ( ph  ->  ( S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c ) ) )  _d t  <  (
( Y  -  X
)  x.  E )  <->  0  <  ( ( ( Y  -  X
)  x.  E )  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c ) ) )  _d t ) ) )
257256biimpar 472 . . . . 5  |-  ( (
ph  /\  0  <  ( ( ( Y  -  X )  x.  E
)  -  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 c ) ) )  _d t ) )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c ) ) )  _d t  <  (
( Y  -  X
)  x.  E ) )
258255, 257syldan 457 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  c ) ) )  _d t  <  (
( Y  -  X
)  x.  E ) )
259144, 156, 160, 178, 258lelttrd 9184 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t )  <  (
( Y  -  X
)  x.  E ) )
260158adantr 452 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  E  e.  RR )
261 ltdivmul 9838 . . . 4  |-  ( ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  e.  RR  /\  E  e.  RR  /\  ( ( Y  -  X )  e.  RR  /\  0  <  ( Y  -  X
) ) )  -> 
( ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t )  /  ( Y  -  X )
)  <  E  <->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c ) )  _d t )  <  (
( Y  -  X
)  x.  E ) ) )
262144, 260, 136, 124, 261syl112anc 1188 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  /  ( Y  -  X ) )  < 
E  <->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  c )
)  _d t )  <  ( ( Y  -  X )  x.  E ) ) )
263259, 262mpbird 224 . 2  |-  ( (
ph  /\  X  <  Y )  ->  ( ( abs `  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 c ) )  _d t )  / 
( Y  -  X
) )  <  E
)
264143, 263eqbrtrd 4192 1  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  c )
) )  <  E
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    \ cdif 3277    C_ wss 3280   {csn 3774   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   dom cdm 4837    |` cres 4839   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946    + caddc 8949    x. cmul 8951   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   RR+crp 10568   (,)cioo 10872   [,]cicc 10875   *ccj 11856   abscabs 11994   TopOpenctopn 13604  ℂfldccnfld 16658    Cn ccn 17242    tX ctx 17545   -cn->ccncf 18859   vol *covol 19312   volcvol 19313  MblFncmbf 19459   L ^1cibl 19462   S.citg 19463
This theorem is referenced by:  ftc1cnnc  26178
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cn 17245  df-cnp 17246  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-ibl 19468  df-itg 19469  df-0p 19515
  Copyright terms: Public domain W3C validator