Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem2 Structured version   Visualization version   GIF version

Theorem lgamgulmlem2 24556
 Description: Lemma for lgamgulm 24561. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem2
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 12162 . . 3 1 ∈ (0[,]1)
2 0elunit 12161 . . 3 0 ∈ (0[,]1)
3 0red 9920 . . . 4 (𝜑 → 0 ∈ ℝ)
4 1red 9934 . . . 4 (𝜑 → 1 ∈ ℝ)
5 eqid 2610 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65subcn 22477 . . . . . 6 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
76a1i 11 . . . . 5 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
8 lgamgulm.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
9 lgamgulm.u . . . . . . . . . . 11 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
108, 9lgamgulmlem1 24555 . . . . . . . . . 10 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
11 lgamgulm.a . . . . . . . . . 10 (𝜑𝐴𝑈)
1210, 11sseldd 3569 . . . . . . . . 9 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1312eldifad 3552 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
14 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
1514nnred 10912 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
1615recnd 9947 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1714nnne0d 10942 . . . . . . . 8 (𝜑𝑁 ≠ 0)
1813, 16, 17divcld 10680 . . . . . . 7 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
19 unitssre 12190 . . . . . . . . 9 (0[,]1) ⊆ ℝ
20 ax-resscn 9872 . . . . . . . . 9 ℝ ⊆ ℂ
2119, 20sstri 3577 . . . . . . . 8 (0[,]1) ⊆ ℂ
2221a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
23 ssid 3587 . . . . . . . 8 ℂ ⊆ ℂ
2423a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
25 cncfmptc 22522 . . . . . . 7 (((𝐴 / 𝑁) ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
2618, 22, 24, 25syl3anc 1318 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
27 cncfmptid 22523 . . . . . . 7 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2821, 24, 27sylancr 694 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2926, 28mulcncf 23023 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((𝐴 / 𝑁) · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
3018adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → (𝐴 / 𝑁) ∈ ℂ)
31 simpr 476 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
3219, 31sseldi 3566 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
3332recnd 9947 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
3430, 33mulcld 9939 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
35 1cnd 9935 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℂ)
3634, 35addcld 9938 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
37 rere 13710 . . . . . . . . . . . 12 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
3837adantl 481 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
3936recld 13782 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ)
4034recld 13782 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
4140recnd 9947 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
4241abscld 14023 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
4334abscld 14023 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
44 1red 9934 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℝ)
45 absrele 13896 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 / 𝑁) · 𝑡) ∈ ℂ → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
4634, 45syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
4744rehalfcld 11156 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) ∈ ℝ)
488nnred 10912 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ ℝ)
4948adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ)
5014adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
5149, 50nndivred 10946 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℝ)
5218abscld 14023 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5430absge0d 14031 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ (abs‘(𝐴 / 𝑁)))
55 0re 9919 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
56 1re 9918 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℝ
5755, 56elicc2i 12110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
5857simp2bi 1070 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
5958adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
6013, 16, 17absdivd 14042 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
6114nnrpd 11746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℝ+)
6261rpge0d 11752 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 ≤ 𝑁)
6315, 62absidd 14009 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (abs‘𝑁) = 𝑁)
6463oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
6560, 64eqtr2d 2645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) = (abs‘(𝐴 / 𝑁)))
6613abscld 14023 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ∈ ℝ)
67 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
6867breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
69 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = 𝐴 → (𝑥 + 𝑘) = (𝐴 + 𝑘))
7069fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7170breq2d 4595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7271ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7368, 72anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7473, 9elrab2 3333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7574simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7611, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7776simpld 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ≤ 𝑅)
7866, 48, 61, 77lediv1dd 11806 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) ≤ (𝑅 / 𝑁))
7965, 78eqbrtrrd 4607 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8157simp3bi 1071 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
8281adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
8353, 51, 32, 44, 54, 59, 80, 82lemul12ad 10845 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) ≤ ((𝑅 / 𝑁) · 1))
8430, 33absmuld 14041 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) = ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)))
8532, 59absidd 14009 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘𝑡) = 𝑡)
8685oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)) = ((abs‘(𝐴 / 𝑁)) · 𝑡))
8784, 86eqtr2d 2645 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) = (abs‘((𝐴 / 𝑁) · 𝑡)))
8851recnd 9947 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℂ)
8988mulid1d 9936 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑅 / 𝑁) · 1) = (𝑅 / 𝑁))
9083, 87, 893brtr3d 4614 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
91 lgamgulm.l . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (2 · 𝑅) ≤ 𝑁)
92 2rp 11713 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ+)
9448, 15, 93lemuldiv2d 11798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
9591, 94mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ≤ (𝑁 / 2))
96 2cnd 10970 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ∈ ℂ)
97 2ne0 10990 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≠ 0
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ≠ 0)
9916, 96, 98divrecd 10683 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
10095, 99breqtrd 4609 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ≤ (𝑁 · (1 / 2)))
1014rehalfcld 11156 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 / 2) ∈ ℝ)
10248, 101, 61ledivmuld 11801 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑅 / 𝑁) ≤ (1 / 2) ↔ 𝑅 ≤ (𝑁 · (1 / 2))))
103100, 102mpbird 246 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 / 𝑁) ≤ (1 / 2))
104103adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ≤ (1 / 2))
10543, 51, 47, 90, 104letrd 10073 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (1 / 2))
106 halflt1 11127 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
107106a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) < 1)
10843, 47, 44, 105, 107lelttrd 10074 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) < 1)
10942, 43, 44, 46, 108lelttrd 10074 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1)
11040, 44absltd 14016 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1 ↔ (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1)))
111109, 110mpbid 221 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1))
112111simpld 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → -1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)))
11344renegcld 10336 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → -1 ∈ ℝ)
114113, 40posdifd 10493 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ↔ 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1)))
115112, 114mpbid 221 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1))
11641, 35subnegd 10278 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
117115, 116breqtrd 4609 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
11834, 35readdd 13802 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)))
119 re1 13742 . . . . . . . . . . . . . . . 16 (ℜ‘1) = 1
120119oveq2i 6560 . . . . . . . . . . . . . . 15 ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1)
121118, 120syl6eq 2660 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
122117, 121breqtrrd 4611 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 0 < (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)))
12339, 122elrpd 11745 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
124123adantr 480 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
12538, 124eqeltrrd 2689 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)
126125ex 449 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+))
127 eqid 2610 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
128127ellogdm 24185 . . . . . . . . 9 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ ∧ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)))
12936, 126, 128sylanbrc 695 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
130 eqidd 2611 . . . . . . . 8 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)))
131127logcn 24193 . . . . . . . . . . 11 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
132131a1i 11 . . . . . . . . . 10 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ))
133 cncff 22504 . . . . . . . . . 10 ((log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
134132, 133syl 17 . . . . . . . . 9 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
135134feqmptd 6159 . . . . . . . 8 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)))
136 fveq2 6103 . . . . . . . 8 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦) = ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)))
137129, 130, 135, 136fmptco 6303 . . . . . . 7 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))))
138 fvres 6117 . . . . . . . . 9 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
139129, 138syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
140139mpteq2dva 4672 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
141137, 140eqtrd 2644 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
142 eqid 2610 . . . . . . . . 9 (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))
143129, 142fmptd 6292 . . . . . . . 8 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0)))
144 difss 3699 . . . . . . . . 9 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
1455addcn 22476 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
146145a1i 11 . . . . . . . . . 10 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
147 1cnd 9935 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
148 cncfmptc 22522 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
149147, 22, 24, 148syl3anc 1318 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
1505, 146, 29, 149cncfmpt2f 22525 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ))
151 cncffvrn 22509 . . . . . . . . 9 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
152144, 150, 151sylancr 694 . . . . . . . 8 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
153143, 152mpbird 246 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))))
154153, 132cncfco 22518 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
155141, 154eqeltrrd 2689 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
1565, 7, 29, 155cncfmpt2f 22525 . . . 4 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ((0[,]1)–cn→ℂ))
15720a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
15819a1i 11 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ ℝ)
159127logdmn0 24186 . . . . . . . . . . 11 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
160129, 159syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
16136, 160logcld 24121 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
16234, 161subcld 10271 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
1635tgioo2 22414 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
164 iccntr 22432 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
16555, 4, 164sylancr 694 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
166157, 158, 162, 163, 5, 165dvmptntr 23540 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))))
167 reelprrecn 9907 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
168167a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
16913adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
17016adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
17117adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ≠ 0)
172169, 170, 171divcld 10680 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ∈ ℂ)
173 ioossicc 12130 . . . . . . . . . . 11 (0(,)1) ⊆ (0[,]1)
174173sseli 3564 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
175174, 33sylan2 490 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
176172, 175mulcld 9939 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
17713adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℂ)
17816adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
17917adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ≠ 0)
180177, 178, 179divcld 10680 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (𝐴 / 𝑁) ∈ ℂ)
181157sselda 3568 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
182180, 181mulcld 9939 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
183 1cnd 9935 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
184168dvmptid 23526 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
185168, 181, 183, 184, 18dvmptcmul 23533 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)))
18618mulid1d 9936 . . . . . . . . . . 11 (𝜑 → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
187186mpteq2dv 4673 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
188185, 187eqtrd 2644 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
189173, 158syl5ss 3579 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℝ)
190 retop 22375 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
191 iooretop 22379 . . . . . . . . . . 11 (0(,)1) ∈ (topGen‘ran (,))
192 isopn3i 20696 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (0(,)1) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
193190, 191, 192mp2an 704 . . . . . . . . . 10 ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1)
194193a1i 11 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
195168, 182, 180, 188, 189, 163, 5, 194dvmptres2 23531 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
196174, 161sylan2 490 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
197 1cnd 9935 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
198176, 197addcld 9938 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
199174, 160sylan2 490 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
200198, 199reccld 10673 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
201200, 172mulcld 9939 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)) ∈ ℂ)
202 cnelprrecn 9908 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
203202a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
204174, 129sylan2 490 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
205 eldifi 3694 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
206205adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
207127logdmn0 24186 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
208207adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
209206, 208logcld 24121 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
210206, 208reccld 10673 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ ℂ)
211182, 183addcld 9938 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
212 0cnd 9912 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
213168, 147dvmptc 23527 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
214168, 182, 180, 188, 183, 212, 213dvmptadd 23529 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)))
21518addid1d 10115 . . . . . . . . . . . 12 (𝜑 → ((𝐴 / 𝑁) + 0) = (𝐴 / 𝑁))
216215mpteq2dv 4673 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
217214, 216eqtrd 2644 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
218168, 211, 180, 217, 189, 163, 5, 194dvmptres2 23531 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
219 fvres 6117 . . . . . . . . . . . . 13 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦) = (log‘𝑦))
220219mpteq2ia 4668 . . . . . . . . . . . 12 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
221135, 220syl6req 2661 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)) = (log ↾ (ℂ ∖ (-∞(,]0))))
222221oveq2d 6565 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))))
223127dvlog 24197 . . . . . . . . . 10 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
224222, 223syl6eq 2660 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
225 fveq2 6103 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (log‘𝑦) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
226 oveq2 6557 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (1 / 𝑦) = (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))
227168, 203, 204, 172, 209, 210, 218, 224, 225, 226dvmptco 23541 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0(,)1) ↦ ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
228168, 176, 172, 195, 196, 201, 227dvmptsub 23536 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
229166, 228eqtrd 2644 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
230229dmeqd 5248 . . . . 5 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
231 ovex 6577 . . . . . 6 ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V
232 eqid 2610 . . . . . 6 (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
233231, 232dmmpti 5936 . . . . 5 dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (0(,)1)
234230, 233syl6eq 2660 . . . 4 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (0(,)1))
235 2re 10967 . . . . . . . . . . 11 2 ∈ ℝ
236235a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
237236, 48remulcld 9949 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
2388nnrpd 11746 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
23948, 238ltaddrpd 11781 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
24048recnd 9947 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
2412402timesd 11152 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
242239, 241breqtrrd 4611 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
24348, 237, 15, 242, 91ltletrd 10076 . . . . . . . 8 (𝜑𝑅 < 𝑁)
244 difrp 11744 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
24548, 15, 244syl2anc 691 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
246243, 245mpbid 221 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
247246rprecred 11759 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
24814nnrecred 10943 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
249247, 248resubcld 10337 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
25048, 249remulcld 9949 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
251229fveq1d 6105 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦) = ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
252251fveq2d 6107 . . . . . 6 (𝜑 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
253252adantr 480 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
254 nfv 1830 . . . . . . 7 𝑡(𝜑𝑦 ∈ (0(,)1))
255 nfcv 2751 . . . . . . . . 9 𝑡abs
256 nffvmpt1 6111 . . . . . . . . 9 𝑡((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)
257255, 256nffv 6110 . . . . . . . 8 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
258 nfcv 2751 . . . . . . . 8 𝑡
259 nfcv 2751 . . . . . . . 8 𝑡(𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
260257, 258, 259nfbr 4629 . . . . . . 7 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
261254, 260nfim 1813 . . . . . 6 𝑡((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
262 eleq1 2676 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (0(,)1) ↔ 𝑦 ∈ (0(,)1)))
263262anbi2d 736 . . . . . . 7 (𝑡 = 𝑦 → ((𝜑𝑡 ∈ (0(,)1)) ↔ (𝜑𝑦 ∈ (0(,)1))))
264 fveq2 6103 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
265264fveq2d 6107 . . . . . . . 8 (𝑡 = 𝑦 → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
266265breq1d 4593 . . . . . . 7 (𝑡 = 𝑦 → ((abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
267263, 266imbi12d 333 . . . . . 6 (𝑡 = 𝑦 → (((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ↔ ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
268 simpr 476 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
269232fvmpt2 6200 . . . . . . . . . 10 ((𝑡 ∈ (0(,)1) ∧ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
270268, 231, 269sylancl 693 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
271270fveq2d 6107 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
272172, 197, 200subdid 10365 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
273172mulid1d 9936 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
274172, 200mulcomd 9940 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))
275273, 274oveq12d 6567 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
276272, 275eqtr2d 2645 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) = ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
277276fveq2d 6107 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
278169, 170, 171absdivd 14042 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
27915adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
28062adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 𝑁)
281279, 280absidd 14009 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝑁) = 𝑁)
282281oveq2d 6565 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
283278, 282eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / 𝑁))
284283oveq1d 6564 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
285197, 200subcld 10271 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
286172, 285absmuld 14041 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
28766adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℝ)
288287recnd 9947 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℂ)
289285abscld 14023 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℝ)
290289recnd 9947 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℂ)
291288, 290, 170, 171div23d 10717 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
292284, 286, 2913eqtr4d 2654 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
293271, 277, 2923eqtrd 2648 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
29448adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ)
295247adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℝ)
296248adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℝ)
297295, 296resubcld 10337 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
298279, 297remulcld 9949 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
29913absge0d 14031 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝐴))
300299adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘𝐴))
301285absge0d 14031 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
30277adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ≤ 𝑅)
303246adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℝ+)
304238adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ+)
305303, 304rpdivcld 11765 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ+)
30612dmgmn0 24552 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ≠ 0)
307306adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ≠ 0)
308169, 170, 307, 171divne0d 10696 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ≠ 0)
309 eliooord 12104 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
310309adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (0 < 𝑡𝑡 < 1))
311310simpld 474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 0 < 𝑡)
312311gt0ne0d 10471 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ≠ 0)
313172, 175, 308, 312mulne0d 10558 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ≠ 0)
314176, 313reccld 10673 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
315197, 314addcld 9938 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℂ)
316176, 197, 176, 313divdird 10718 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))))
317176, 313dividd 10678 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) = 1)
318317oveq1d 6564 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
319316, 318eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
320198, 176, 199, 313divne0d 10696 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) ≠ 0)
321319, 320eqnetrrd 2850 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ≠ 0)
322315, 321absrpcld 14035 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ+)
323 1red 9934 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
324 0le1 10430 . . . . . . . . . . . . . 14 0 ≤ 1
325324a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 1)
326305rpred 11748 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ)
327314negcld 10258 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → -(1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
328327abscld 14023 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
329328, 323resubcld 10337 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ∈ ℝ)
330315abscld 14023 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ)
331240adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℂ)
332304rpne0d 11753 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ≠ 0)
333170, 331, 331, 332divsubdird 10719 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − (𝑅 / 𝑅)))
334331, 332dividd 10678 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑅) = 1)
335334oveq2d 6565 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − (𝑅 / 𝑅)) = ((𝑁 / 𝑅) − 1))
336333, 335eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − 1))
337279, 304rerpdivcld 11779 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ∈ ℝ)
338331, 170, 332, 171recdivd 10697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) = (𝑁 / 𝑅))
339174, 90sylan2 490 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
340176, 313absrpcld 14035 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ+)
34161adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
342304, 341rpdivcld 11765 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑁) ∈ ℝ+)
343340, 342lerecd 11767 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁) ↔ (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))))
344339, 343mpbid 221 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
345338, 344eqbrtrrd 4607 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
346314absnegd 14036 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))))
347197, 176, 313absdivd 14042 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))))
348 abs1 13885 . . . . . . . . . . . . . . . . . . . 20 (abs‘1) = 1
349348oveq1i 6559 . . . . . . . . . . . . . . . . . . 19 ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))
350347, 349syl6eq 2660 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
351346, 350eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
352345, 351breqtrrd 4611 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))))
353337, 328, 323, 352lesub1dd 10522 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − 1) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
354336, 353eqbrtrd 4605 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
355348oveq2i 6560 . . . . . . . . . . . . . . . 16 ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) = ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1)
356327, 197abs2difd 14044 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
357355, 356syl5eqbrr 4619 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
358197, 314addcomd 10117 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = ((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
359358negeqd 10154 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
360314, 197negdi2d 10285 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
361359, 360eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
362361fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
363315absnegd 14036 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
364362, 363eqtr3d 2646 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
365357, 364breqtrd 4609 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
366326, 329, 330, 354, 365letrd 10073 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
367305, 322, 323, 325, 366lediv2ad 11770 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ (1 / ((𝑁𝑅) / 𝑅)))
36816, 240subcld 10271 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ∈ ℂ)
369368adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℂ)
37048, 243gtned 10051 . . . . . . . . . . . . . . . 16 (𝜑𝑁𝑅)
37116, 240, 370subne0d 10280 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ≠ 0)
372371adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ≠ 0)
373369, 331, 372, 332recdivd 10697 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = (𝑅 / (𝑁𝑅)))
374170, 331nncand 10276 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − (𝑁𝑅)) = 𝑅)
375374oveq1d 6564 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = (𝑅 / (𝑁𝑅)))
376170, 369, 369, 372divsubdird 10719 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
377375, 376eqtr3d 2646 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
378369, 372dividd 10678 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / (𝑁𝑅)) = 1)
379378oveq2d 6565 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))) = ((𝑁 / (𝑁𝑅)) − 1))
380373, 377, 3793eqtrd 2648 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = ((𝑁 / (𝑁𝑅)) − 1))
381367, 380breqtrd 4609 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ ((𝑁 / (𝑁𝑅)) − 1))
382198, 197, 198, 199divsubdird 10719 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
383176, 197pncand 10272 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) − 1) = ((𝐴 / 𝑁) · 𝑡))
384383oveq1d 6564 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
385198, 199dividd 10678 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = 1)
386385oveq1d 6564 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
387382, 384, 3863eqtr3rd 2653 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
388198, 176, 199, 313recdivd 10697 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
389319oveq2d 6565 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
390387, 388, 3893eqtr2d 2650 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
391390fveq2d 6107 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
392197, 315, 321absdivd 14042 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
393348oveq1i 6559 . . . . . . . . . . . . 13 ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
394392, 393syl6eq 2660 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
395391, 394eqtrd 2644 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
396368, 371reccld 10673 . . . . . . . . . . . . . 14 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
397396adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℂ)
398248recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (1 / 𝑁) ∈ ℂ)
399398adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℂ)
400170, 397, 399subdid 10365 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))))
401170, 369, 372divrecd 10683 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / (𝑁𝑅)) = (𝑁 · (1 / (𝑁𝑅))))
402401eqcomd 2616 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / (𝑁𝑅))) = (𝑁 / (𝑁𝑅)))
403170, 171recidd 10675 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / 𝑁)) = 1)
404402, 403oveq12d 6567 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
405400, 404eqtrd 2644 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
406381, 395, 4053brtr4d 4615 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ≤ (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
407287, 294, 289, 298, 300, 301, 302, 406lemul12ad 10845 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
408249recnd 9947 . . . . . . . . . . 11 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
409408adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
410331, 170, 409mul12d 10124 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
411407, 410breqtrd 4609 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
412287, 289remulcld 9949 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ∈ ℝ)
413250adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
414412, 413, 341ledivmuld 11801 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
415411, 414mpbird 246 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
416293, 415eqbrtrd 4605 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
417261, 267, 416chvar 2250 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
418253, 417eqbrtrd 4605 . . . 4 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
4193, 4, 156, 234, 250, 418dvlip 23560 . . 3 ((𝜑 ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
4201, 2, 419mpanr12 717 . 2 (𝜑 → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
421 eqidd 2611 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))
422 oveq2 6557 . . . . . . . 8 (𝑡 = 1 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 1))
423422, 186sylan9eqr 2666 . . . . . . 7 ((𝜑𝑡 = 1) → ((𝐴 / 𝑁) · 𝑡) = (𝐴 / 𝑁))
424423oveq1d 6564 . . . . . . . 8 ((𝜑𝑡 = 1) → (((𝐴 / 𝑁) · 𝑡) + 1) = ((𝐴 / 𝑁) + 1))
425424fveq2d 6107 . . . . . . 7 ((𝜑𝑡 = 1) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘((𝐴 / 𝑁) + 1)))
426423, 425oveq12d 6567 . . . . . 6 ((𝜑𝑡 = 1) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
4271a1i 11 . . . . . 6 (𝜑 → 1 ∈ (0[,]1))
428 ovex 6577 . . . . . . 7 ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ V
429428a1i 11 . . . . . 6 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ V)
430421, 426, 427, 429fvmptd 6197 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
431 oveq2 6557 . . . . . . . . 9 (𝑡 = 0 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 0))
43218mul01d 10114 . . . . . . . . 9 (𝜑 → ((𝐴 / 𝑁) · 0) = 0)
433431, 432sylan9eqr 2666 . . . . . . . 8 ((𝜑𝑡 = 0) → ((𝐴 / 𝑁) · 𝑡) = 0)
434433oveq1d 6564 . . . . . . . . . . 11 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = (0 + 1))
435 0p1e1 11009 . . . . . . . . . . 11 (0 + 1) = 1
436434, 435syl6eq 2660 . . . . . . . . . 10 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = 1)
437436fveq2d 6107 . . . . . . . . 9 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘1))
438 log1 24136 . . . . . . . . 9 (log‘1) = 0
439437, 438syl6eq 2660 . . . . . . . 8 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = 0)
440433, 439oveq12d 6567 . . . . . . 7 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (0 − 0))
441 0m0e0 11007 . . . . . . 7 (0 − 0) = 0
442440, 441syl6eq 2660 . . . . . 6 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = 0)
4432a1i 11 . . . . . 6 (𝜑 → 0 ∈ (0[,]1))
444421, 442, 443, 443fvmptd 6197 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0) = 0)
445430, 444oveq12d 6567 . . . 4 (𝜑 → (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)) = (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0))
44618, 147addcld 9938 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
44712, 14dmgmdivn0 24554 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
448446, 447logcld 24121 . . . . . 6 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
44918, 448subcld 10271 . . . . 5 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
450449subid1d 10260 . . . 4 (𝜑 → (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
451445, 450eqtr2d 2645 . . 3 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) = (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)))
452451fveq2d 6107 . 2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) = (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))))
453 1m0e1 11008 . . . . . 6 (1 − 0) = 1
454453fveq2i 6106 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
455454, 348eqtri 2632 . . . 4 (abs‘(1 − 0)) = 1
456455oveq2i 6560 . . 3 ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1)
457240, 408mulcld 9939 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℂ)
458457mulid1d 9936 . . 3 (𝜑 → ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
459456, 458syl5req 2657 . 2 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
460420, 452, 4593brtr4d 4615 1 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  {cpr 4127   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  -∞cmnf 9951   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℝ+crp 11708  (,)cioo 12046  (,]cioc 12047  [,]cicc 12049  ℜcre 13685  abscabs 13822  TopOpenctopn 15905  topGenctg 15921  ℂfldccnfld 19567  Topctop 20517  intcnt 20631   Cn ccn 20838   ×t ctx 21173  –cn→ccncf 22487   D cdv 23433  logclog 24105 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107 This theorem is referenced by:  lgamgulmlem3  24557
 Copyright terms: Public domain W3C validator