Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimir Structured version   Visualization version   GIF version

Theorem poimir 32612
Description: Poincare-Miranda theorem. Theorem on [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimir.i 𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))
poimir.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
poimir.1 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
poimir.2 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)
poimir.3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))
Assertion
Ref Expression
poimir (𝜑 → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0}))
Distinct variable groups:   𝑧,𝑛,𝜑   𝑛,𝐹   𝑛,𝑁   𝜑,𝑧   𝑧,𝐹   𝑧,𝑁   𝑛,𝑐,𝑧,𝜑   𝐹,𝑐   𝐼,𝑐,𝑛,𝑧   𝑁,𝑐   𝑅,𝑐,𝑛,𝑧

Proof of Theorem poimir
Dummy variables 𝑥 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3 (𝜑𝑁 ∈ ℕ)
2 poimir.i . . 3 𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))
3 poimir.r . . 3 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
4 poimir.1 . . 3 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
5 poimir.2 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)
6 poimir.3 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))
71, 2, 3, 4, 5, 6poimirlem32 32611 . 2 (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
8 ovex 6577 . . . . . . . . . . . . . . . . . . . . . 22 (1...𝑁) ∈ V
9 retopon 22377 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
103pttoponconst 21210 . . . . . . . . . . . . . . . . . . . . . 22 (((1...𝑁) ∈ V ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → 𝑅 ∈ (TopOn‘(ℝ ↑𝑚 (1...𝑁))))
118, 9, 10mp2an 704 . . . . . . . . . . . . . . . . . . . . 21 𝑅 ∈ (TopOn‘(ℝ ↑𝑚 (1...𝑁)))
1211topontopi 20546 . . . . . . . . . . . . . . . . . . . 20 𝑅 ∈ Top
13 reex 9906 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
14 unitssre 12190 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]1) ⊆ ℝ
15 mapss 7786 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑𝑚 (1...𝑁)) ⊆ (ℝ ↑𝑚 (1...𝑁)))
1613, 14, 15mp2an 704 . . . . . . . . . . . . . . . . . . . . 21 ((0[,]1) ↑𝑚 (1...𝑁)) ⊆ (ℝ ↑𝑚 (1...𝑁))
172, 16eqsstri 3598 . . . . . . . . . . . . . . . . . . . 20 𝐼 ⊆ (ℝ ↑𝑚 (1...𝑁))
1811toponunii 20547 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ↑𝑚 (1...𝑁)) = 𝑅
1918restuni 20776 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ ↑𝑚 (1...𝑁))) → 𝐼 = (𝑅t 𝐼))
2012, 17, 19mp2an 704 . . . . . . . . . . . . . . . . . . 19 𝐼 = (𝑅t 𝐼)
2120, 18cnf 20860 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅) → 𝐹:𝐼⟶(ℝ ↑𝑚 (1...𝑁)))
224, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐼⟶(ℝ ↑𝑚 (1...𝑁)))
2322ffvelrnda 6267 . . . . . . . . . . . . . . . 16 ((𝜑𝑐𝐼) → (𝐹𝑐) ∈ (ℝ ↑𝑚 (1...𝑁)))
24 elmapi 7765 . . . . . . . . . . . . . . . 16 ((𝐹𝑐) ∈ (ℝ ↑𝑚 (1...𝑁)) → (𝐹𝑐):(1...𝑁)⟶ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑐𝐼) → (𝐹𝑐):(1...𝑁)⟶ℝ)
2625ffvelrnda 6267 . . . . . . . . . . . . . 14 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑐)‘𝑛) ∈ ℝ)
27 recn 9905 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((𝐹𝑐)‘𝑛) ∈ ℂ)
28 absrpcl 13876 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℂ ∧ ((𝐹𝑐)‘𝑛) ≠ 0) → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+)
2928ex 449 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℂ → (((𝐹𝑐)‘𝑛) ≠ 0 → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+))
31 ltsubrp 11742 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛))
32 ltaddrp 11743 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))
3331, 32jca 553 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))
3433ex 449 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+ → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
3530, 34syld 46 . . . . . . . . . . . . . . 15 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
3627abscld 14023 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑐)‘𝑛) ∈ ℝ → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ)
37 resubcl 10224 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
3836, 37mpdan 699 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
3938rexrd 9968 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ*)
40 readdcl 9898 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
4136, 40mpdan 699 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
4241rexrd 9968 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ*)
43 rexr 9964 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((𝐹𝑐)‘𝑛) ∈ ℝ*)
44 elioo5 12102 . . . . . . . . . . . . . . . 16 (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ* ∧ (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ* ∧ ((𝐹𝑐)‘𝑛) ∈ ℝ*) → (((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4539, 42, 43, 44syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4635, 45sylibrd 248 . . . . . . . . . . . . . 14 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4726, 46syl 17 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
48 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
4948fveq1d 6105 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑐 → ((𝐹𝑥)‘𝑛) = ((𝐹𝑐)‘𝑛))
50 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) = (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))
51 fvex 6113 . . . . . . . . . . . . . . . 16 ((𝐹𝑐)‘𝑛) ∈ V
5249, 50, 51fvmpt 6191 . . . . . . . . . . . . . . 15 (𝑐𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) = ((𝐹𝑐)‘𝑛))
5352eleq1d 2672 . . . . . . . . . . . . . 14 (𝑐𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
5453ad2antlr 759 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
5547, 54sylibrd 248 . . . . . . . . . . . 12 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
56 iooretop 22379 . . . . . . . . . . . . 13 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∈ (topGen‘ran (,))
57 resttopon 20775 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ (TopOn‘(ℝ ↑𝑚 (1...𝑁))) ∧ 𝐼 ⊆ (ℝ ↑𝑚 (1...𝑁))) → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
5811, 17, 57mp2an 704 . . . . . . . . . . . . . . . . . . 19 (𝑅t 𝐼) ∈ (TopOn‘𝐼)
5958a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
6022feqmptd 6159 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
6160, 4eqeltrrd 2689 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ ((𝑅t 𝐼) Cn 𝑅))
6261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ ((𝑅t 𝐼) Cn 𝑅))
6311a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑅 ∈ (TopOn‘(ℝ ↑𝑚 (1...𝑁))))
64 retop 22375 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
6564fconst6 6008 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top
6618, 3ptpjcn 21224 . . . . . . . . . . . . . . . . . . . . 21 (((1...𝑁) ∈ V ∧ ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top ∧ 𝑛 ∈ (1...𝑁)) → (𝑧 ∈ (ℝ ↑𝑚 (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
678, 65, 66mp3an12 1406 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → (𝑧 ∈ (ℝ ↑𝑚 (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
68 fvex 6113 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ V
6968fvconst2 6374 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
7069oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) = (𝑅 Cn (topGen‘ran (,))))
7167, 70eleqtrd 2690 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → (𝑧 ∈ (ℝ ↑𝑚 (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (topGen‘ran (,))))
7271adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑧 ∈ (ℝ ↑𝑚 (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (topGen‘ran (,))))
73 fveq1 6102 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐹𝑥) → (𝑧𝑛) = ((𝐹𝑥)‘𝑛))
7459, 62, 63, 72, 73cnmpt11 21276 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ ((𝑅t 𝐼) Cn (topGen‘ran (,))))
7520cncnpi 20892 . . . . . . . . . . . . . . . . 17 (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ ((𝑅t 𝐼) Cn (topGen‘ran (,))) ∧ 𝑐𝐼) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
7674, 75sylan 487 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑐𝐼) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
7776an32s 842 . . . . . . . . . . . . . . 15 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
78 iscnp 20851 . . . . . . . . . . . . . . . . 17 (((𝑅t 𝐼) ∈ (TopOn‘𝐼) ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝑐𝐼) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
7958, 9, 78mp3an12 1406 . . . . . . . . . . . . . . . 16 (𝑐𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
8079ad2antlr 759 . . . . . . . . . . . . . . 15 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
8177, 80mpbid 221 . . . . . . . . . . . . . 14 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧))))
8281simprd 478 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))
83 eleq2 2677 . . . . . . . . . . . . . . 15 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
84 sseq2 3590 . . . . . . . . . . . . . . . . 17 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
8584anbi2d 736 . . . . . . . . . . . . . . . 16 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧) ↔ (𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
8685rexbidv 3034 . . . . . . . . . . . . . . 15 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
8783, 86imbi12d 333 . . . . . . . . . . . . . 14 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)) ↔ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))))
8887rspcv 3278 . . . . . . . . . . . . 13 (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∈ (topGen‘ran (,)) → (∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))))
8956, 82, 88mpsyl 66 . . . . . . . . . . . 12 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
9055, 89syld 46 . . . . . . . . . . 11 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
91 0re 9919 . . . . . . . . . . . 12 0 ∈ ℝ
92 letric 10016 . . . . . . . . . . . 12 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))
9326, 91, 92sylancl 693 . . . . . . . . . . 11 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))
9490, 93jctird 565 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
95 r19.41v 3070 . . . . . . . . . . 11 (∃𝑣 ∈ (𝑅t 𝐼)((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))))
96 anass 679 . . . . . . . . . . . 12 (((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ (𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9796rexbii 3023 . . . . . . . . . . 11 (∃𝑣 ∈ (𝑅t 𝐼)((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9895, 97bitr3i 265 . . . . . . . . . 10 ((∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9994, 98syl6ib 240 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))))))
10058topontopi 20546 . . . . . . . . . . . . 13 (𝑅t 𝐼) ∈ Top
10120eltopss 20537 . . . . . . . . . . . . 13 (((𝑅t 𝐼) ∈ Top ∧ 𝑣 ∈ (𝑅t 𝐼)) → 𝑣𝐼)
102100, 101mpan 702 . . . . . . . . . . . 12 (𝑣 ∈ (𝑅t 𝐼) → 𝑣𝐼)
103 fvex 6113 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥)‘𝑛) ∈ V
104103, 50dmmpti 5936 . . . . . . . . . . . . . . . . 17 dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) = 𝐼
105104sseq2i 3593 . . . . . . . . . . . . . . . 16 (𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ↔ 𝑣𝐼)
106 funmpt 5840 . . . . . . . . . . . . . . . . 17 Fun (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))
107 funimass4 6157 . . . . . . . . . . . . . . . . 17 ((Fun (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∧ 𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
108106, 107mpan 702 . . . . . . . . . . . . . . . 16 (𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
109105, 108sylbir 224 . . . . . . . . . . . . . . 15 (𝑣𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
110 ssel2 3563 . . . . . . . . . . . . . . . . 17 ((𝑣𝐼𝑧𝑣) → 𝑧𝐼)
111 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
112111fveq1d 6105 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → ((𝐹𝑥)‘𝑛) = ((𝐹𝑧)‘𝑛))
113 fvex 6113 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑧)‘𝑛) ∈ V
114112, 50, 113fvmpt 6191 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) = ((𝐹𝑧)‘𝑛))
115114eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑧𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑧)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
116 eliooord 12104 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑧)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))
117115, 116syl6bi 242 . . . . . . . . . . . . . . . . 17 (𝑧𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
118110, 117syl 17 . . . . . . . . . . . . . . . 16 ((𝑣𝐼𝑧𝑣) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
119118ralimdva 2945 . . . . . . . . . . . . . . 15 (𝑣𝐼 → (∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
120109, 119sylbid 229 . . . . . . . . . . . . . 14 (𝑣𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
121120adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
122 absnid 13886 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (abs‘((𝐹𝑐)‘𝑛)) = -((𝐹𝑐)‘𝑛))
123122oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)))
12427negidd 10261 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)) = 0)
125124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)) = 0)
126123, 125eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
12726, 126sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
129128breq2d 4595 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ↔ ((𝐹𝑧)‘𝑛) < 0))
13022ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧𝐼) → (𝐹𝑧) ∈ (ℝ ↑𝑚 (1...𝑁)))
131 elmapi 7765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑧) ∈ (ℝ ↑𝑚 (1...𝑁)) → (𝐹𝑧):(1...𝑁)⟶ℝ)
132130, 131syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧𝐼) → (𝐹𝑧):(1...𝑁)⟶ℝ)
133132ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑧)‘𝑛) ∈ ℝ)
134133an32s 842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → ((𝐹𝑧)‘𝑛) ∈ ℝ)
135 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → 0 ∈ ℝ)
136134, 135ltnled 10063 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
137136adantllr 751 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
138137adantlr 747 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
139129, 138bitrd 267 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
140139biimpd 218 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
141110, 140sylan2 490 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ (𝑣𝐼𝑧𝑣)) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
142141anassrs 678 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
143142adantld 482 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
144143ralimdva 2945 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
145144an32s 842 . . . . . . . . . . . . . . . 16 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
146145impancom 455 . . . . . . . . . . . . . . 15 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → (((𝐹𝑐)‘𝑛) ≤ 0 → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
147 absid 13884 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (abs‘((𝐹𝑐)‘𝑛)) = ((𝐹𝑐)‘𝑛))
148147oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)))
14927subidd 10259 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)) = 0)
150149adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)) = 0)
151148, 150eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
15226, 151sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
154153breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ↔ 0 < ((𝐹𝑧)‘𝑛)))
155135, 134ltnled 10063 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
156155adantllr 751 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
157156adantlr 747 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
158154, 157bitrd 267 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
159158biimpd 218 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
160110, 159sylan2 490 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ (𝑣𝐼𝑧𝑣)) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
161160anassrs 678 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
162161adantrd 483 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
163162ralimdva 2945 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
164163an32s 842 . . . . . . . . . . . . . . . 16 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
165164impancom 455 . . . . . . . . . . . . . . 15 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → (0 ≤ ((𝐹𝑐)‘𝑛) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
166146, 165orim12d 879 . . . . . . . . . . . . . 14 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → ((((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
167166expimpd 627 . . . . . . . . . . . . 13 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → ((∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
168121, 167syland 497 . . . . . . . . . . . 12 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
169102, 168sylan2 490 . . . . . . . . . . 11 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ∈ (𝑅t 𝐼)) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
170169anim2d 587 . . . . . . . . . 10 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ∈ (𝑅t 𝐼)) → ((𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))) → (𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
171170reximdva 3000 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
17299, 171syld 46 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
173 ralnex 2975 . . . . . . . . . . . . . 14 (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
174173rexbii 3023 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ }∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∃𝑟 ∈ { ≤ , ≤ } ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
175 letsr 17050 . . . . . . . . . . . . . . 15 ≤ ∈ TosetRel
176175elexi 3186 . . . . . . . . . . . . . 14 ≤ ∈ V
177176cnvex 7006 . . . . . . . . . . . . . 14 ≤ ∈ V
178 breq 4585 . . . . . . . . . . . . . . . 16 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ 0 ≤ ((𝐹𝑧)‘𝑛)))
179178notbid 307 . . . . . . . . . . . . . . 15 (𝑟 = ≤ → (¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
180179ralbidv 2969 . . . . . . . . . . . . . 14 (𝑟 = ≤ → (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
181 breq 4585 . . . . . . . . . . . . . . . . 17 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ 0 ≤ ((𝐹𝑧)‘𝑛)))
182 c0ex 9913 . . . . . . . . . . . . . . . . . 18 0 ∈ V
183182, 113brcnv 5227 . . . . . . . . . . . . . . . . 17 (0 ≤ ((𝐹𝑧)‘𝑛) ↔ ((𝐹𝑧)‘𝑛) ≤ 0)
184181, 183syl6bb 275 . . . . . . . . . . . . . . . 16 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ ((𝐹𝑧)‘𝑛) ≤ 0))
185184notbid 307 . . . . . . . . . . . . . . 15 (𝑟 = ≤ → (¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
186185ralbidv 2969 . . . . . . . . . . . . . 14 (𝑟 = ≤ → (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
187176, 177, 180, 186rexpr 4186 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ }∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
188 rexnal 2978 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ } ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
189174, 187, 1883bitr3i 289 . . . . . . . . . . . 12 ((∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0) ↔ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
190189anbi2i 726 . . . . . . . . . . 11 ((𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ (𝑐𝑣 ∧ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
191 annim 440 . . . . . . . . . . 11 ((𝑐𝑣 ∧ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) ↔ ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
192190, 191bitri 263 . . . . . . . . . 10 ((𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
193192rexbii 3023 . . . . . . . . 9 (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ∃𝑣 ∈ (𝑅t 𝐼) ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
194 rexnal 2978 . . . . . . . . 9 (∃𝑣 ∈ (𝑅t 𝐼) ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) ↔ ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
195193, 194bitri 263 . . . . . . . 8 (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
196172, 195syl6ib 240 . . . . . . 7 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))))
197196necon4ad 2801 . . . . . 6 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ((𝐹𝑐)‘𝑛) = 0))
198197ralimdva 2945 . . . . 5 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0))
199 ffn 5958 . . . . . 6 ((𝐹𝑐):(1...𝑁)⟶ℝ → (𝐹𝑐) Fn (1...𝑁))
20025, 199syl 17 . . . . 5 ((𝜑𝑐𝐼) → (𝐹𝑐) Fn (1...𝑁))
201198, 200jctild 564 . . . 4 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0)))
202 fconstfv 6381 . . . . 5 ((𝐹𝑐):(1...𝑁)⟶{0} ↔ ((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0))
203182fconst2 6375 . . . . 5 ((𝐹𝑐):(1...𝑁)⟶{0} ↔ (𝐹𝑐) = ((1...𝑁) × {0}))
204202, 203bitr3i 265 . . . 4 (((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0) ↔ (𝐹𝑐) = ((1...𝑁) × {0}))
205201, 204syl6ib 240 . . 3 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → (𝐹𝑐) = ((1...𝑁) × {0})))
206205reximdva 3000 . 2 (𝜑 → (∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0})))
2077, 206mpd 15 1 (𝜑 → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  {csn 4125  {cpr 4127   cuni 4372   class class class wbr 4583  cmpt 4643   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cn 10897  +crp 11708  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  abscabs 13822  t crest 15904  topGenctg 15921  tcpt 15922   TosetRel ctsr 17022  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   CnP ccnp 20839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-rest 15906  df-topgen 15927  df-pt 15928  df-ps 17023  df-tsr 17024  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-lp 20750  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-hmph 21369  df-ii 22488
This theorem is referenced by:  broucube  32613
  Copyright terms: Public domain W3C validator