MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt11 Structured version   Visualization version   GIF version

Theorem cnmpt11 21276
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt11.b (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
cnmpt11.c (𝑦 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt11 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem cnmpt11
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥𝑋)
2 cnmptid.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmpt11.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmpt11.a . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnf2 20863 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
62, 3, 4, 5syl3anc 1318 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
7 eqid 2610 . . . . . . . . . . . 12 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
87fmpt 6289 . . . . . . . . . . 11 (∀𝑥𝑋 𝐴𝑌 ↔ (𝑥𝑋𝐴):𝑋𝑌)
96, 8sylibr 223 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 𝐴𝑌)
109r19.21bi 2916 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐴𝑌)
117fvmpt2 6200 . . . . . . . . 9 ((𝑥𝑋𝐴𝑌) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
121, 10, 11syl2anc 691 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
1312fveq2d 6107 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = ((𝑦𝑌𝐵)‘𝐴))
14 cnmpt11.b . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
15 cntop2 20855 . . . . . . . . . . . . . 14 ((𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ Top)
17 eqid 2610 . . . . . . . . . . . . . 14 𝐿 = 𝐿
1817toptopon 20548 . . . . . . . . . . . . 13 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1916, 18sylib 207 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
20 cnf2 20863 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐵):𝑌 𝐿)
213, 19, 14, 20syl3anc 1318 . . . . . . . . . . 11 (𝜑 → (𝑦𝑌𝐵):𝑌 𝐿)
22 eqid 2610 . . . . . . . . . . . 12 (𝑦𝑌𝐵) = (𝑦𝑌𝐵)
2322fmpt 6289 . . . . . . . . . . 11 (∀𝑦𝑌 𝐵 𝐿 ↔ (𝑦𝑌𝐵):𝑌 𝐿)
2421, 23sylibr 223 . . . . . . . . . 10 (𝜑 → ∀𝑦𝑌 𝐵 𝐿)
2524adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 𝐿)
26 cnmpt11.c . . . . . . . . . . 11 (𝑦 = 𝐴𝐵 = 𝐶)
2726eleq1d 2672 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝐵 𝐿𝐶 𝐿))
2827rspcv 3278 . . . . . . . . 9 (𝐴𝑌 → (∀𝑦𝑌 𝐵 𝐿𝐶 𝐿))
2910, 25, 28sylc 63 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 𝐿)
3026, 22fvmptg 6189 . . . . . . . 8 ((𝐴𝑌𝐶 𝐿) → ((𝑦𝑌𝐵)‘𝐴) = 𝐶)
3110, 29, 30syl2anc 691 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘𝐴) = 𝐶)
3213, 31eqtrd 2644 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = 𝐶)
33 fvco3 6185 . . . . . . 7 (((𝑥𝑋𝐴):𝑋𝑌𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
346, 33sylan 487 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
35 eqid 2610 . . . . . . . 8 (𝑥𝑋𝐶) = (𝑥𝑋𝐶)
3635fvmpt2 6200 . . . . . . 7 ((𝑥𝑋𝐶 𝐿) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
371, 29, 36syl2anc 691 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
3832, 34, 373eqtr4d 2654 . . . . 5 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
3938ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
40 nfv 1830 . . . . 5 𝑧(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥)
41 nfcv 2751 . . . . . . . 8 𝑥(𝑦𝑌𝐵)
42 nfmpt1 4675 . . . . . . . 8 𝑥(𝑥𝑋𝐴)
4341, 42nfco 5209 . . . . . . 7 𝑥((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))
44 nfcv 2751 . . . . . . 7 𝑥𝑧
4543, 44nffv 6110 . . . . . 6 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧)
46 nfmpt1 4675 . . . . . . 7 𝑥(𝑥𝑋𝐶)
4746, 44nffv 6110 . . . . . 6 𝑥((𝑥𝑋𝐶)‘𝑧)
4845, 47nfeq 2762 . . . . 5 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)
49 fveq2 6103 . . . . . 6 (𝑥 = 𝑧 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧))
50 fveq2 6103 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑋𝐶)‘𝑥) = ((𝑥𝑋𝐶)‘𝑧))
5149, 50eqeq12d 2625 . . . . 5 (𝑥 = 𝑧 → ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5240, 48, 51cbvral 3143 . . . 4 (∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
5339, 52sylib 207 . . 3 (𝜑 → ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
54 fco 5971 . . . . . 6 (((𝑦𝑌𝐵):𝑌 𝐿 ∧ (𝑥𝑋𝐴):𝑋𝑌) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5521, 6, 54syl2anc 691 . . . . 5 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
56 ffn 5958 . . . . 5 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋)
5755, 56syl 17 . . . 4 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋)
5829, 35fmptd 6292 . . . . 5 (𝜑 → (𝑥𝑋𝐶):𝑋 𝐿)
59 ffn 5958 . . . . 5 ((𝑥𝑋𝐶):𝑋 𝐿 → (𝑥𝑋𝐶) Fn 𝑋)
6058, 59syl 17 . . . 4 (𝜑 → (𝑥𝑋𝐶) Fn 𝑋)
61 eqfnfv 6219 . . . 4 ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋 ∧ (𝑥𝑋𝐶) Fn 𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
6257, 60, 61syl2anc 691 . . 3 (𝜑 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
6353, 62mpbird 246 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
64 cnco 20880 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
654, 14, 64syl2anc 691 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
6663, 65eqeltrrd 2689 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896   cuni 4372  cmpt 4643  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518   Cn ccn 20838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-cn 20841
This theorem is referenced by:  cnmpt11f  21277  cnmptkp  21293  cnmptk1  21294  cnmpt1k  21295  ptunhmeo  21421  tmdgsum  21709  icchmeo  22548  evth2  22567  sinccvglem  30820  poimir  32612  broucube  32613
  Copyright terms: Public domain W3C validator