MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstfv Structured version   Visualization version   GIF version

Theorem fconstfv 6381
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 6375. (Contributed by NM, 27-Aug-2004.) (Proof shortened by OpenAI, 25-Mar-2020.)
Assertion
Ref Expression
fconstfv (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fconstfv
StepHypRef Expression
1 ffnfv 6295 . 2 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
2 fvex 6113 . . . . 5 (𝐹𝑥) ∈ V
32elsn 4140 . . . 4 ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵)
43ralbii 2963 . . 3 (∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)
54anbi2i 726 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
61, 5bitri 263 1 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {csn 4125   Fn wfn 5799  wf 5800  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812
This theorem is referenced by:  fconst3  6382  repsdf2  13376  rrxcph  22988  lnon0  27037  df0op2  27995  matunitlindflem1  32575  poimir  32612  lfl1  33375
  Copyright terms: Public domain W3C validator