Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst2 Structured version   Visualization version   GIF version

Theorem fconst2 6375
 Description: A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999.)
Hypothesis
Ref Expression
fvconst2.1 𝐵 ∈ V
Assertion
Ref Expression
fconst2 (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))

Proof of Theorem fconst2
StepHypRef Expression
1 fvconst2.1 . 2 𝐵 ∈ V
2 fconst2g 6373 . 2 (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
31, 2ax-mp 5 1 (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475   ∈ wcel 1977  Vcvv 3173  {csn 4125   × cxp 5036  ⟶wf 5800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812 This theorem is referenced by:  map1  7921  rrxcph  22988  dvcmul  23513  plyeq0  23771  lnon0  27037  hsn0elch  27489  df0op2  27995  nmop0h  28234  xrge0mulc1cn  29315  matunitlindflem1  32575  poimirlem9  32588  poimir  32612  lfl1  33375  lkr0f  33399  lindsrng01  42051
 Copyright terms: Public domain W3C validator