Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst5 Structured version   Visualization version   GIF version

Theorem fconst5 6376
 Description: Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst5 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))

Proof of Theorem fconst5
StepHypRef Expression
1 rneq 5272 . . . 4 (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = ran (𝐴 × {𝐵}))
2 rnxp 5483 . . . . 5 (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵})
32eqeq2d 2620 . . . 4 (𝐴 ≠ ∅ → (ran 𝐹 = ran (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
41, 3syl5ib 233 . . 3 (𝐴 ≠ ∅ → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵}))
54adantl 481 . 2 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵}))
6 df-fo 5810 . . . . . . 7 (𝐹:𝐴onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))
7 fof 6028 . . . . . . 7 (𝐹:𝐴onto→{𝐵} → 𝐹:𝐴⟶{𝐵})
86, 7sylbir 224 . . . . . 6 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵})
9 fconst2g 6373 . . . . . 6 (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
108, 9syl5ib 233 . . . . 5 (𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹 = (𝐴 × {𝐵})))
1110expd 451 . . . 4 (𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
1211adantrd 483 . . 3 (𝐵 ∈ V → ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
13 fnrel 5903 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
14 snprc 4197 . . . . . 6 𝐵 ∈ V ↔ {𝐵} = ∅)
15 relrn0 5304 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅))
1615biimprd 237 . . . . . . . . 9 (Rel 𝐹 → (ran 𝐹 = ∅ → 𝐹 = ∅))
1716adantl 481 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = ∅ → 𝐹 = ∅))
18 eqeq2 2621 . . . . . . . . 9 ({𝐵} = ∅ → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅))
1918adantr 480 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅))
20 xpeq2 5053 . . . . . . . . . . 11 ({𝐵} = ∅ → (𝐴 × {𝐵}) = (𝐴 × ∅))
21 xp0 5471 . . . . . . . . . . 11 (𝐴 × ∅) = ∅
2220, 21syl6eq 2660 . . . . . . . . . 10 ({𝐵} = ∅ → (𝐴 × {𝐵}) = ∅)
2322eqeq2d 2620 . . . . . . . . 9 ({𝐵} = ∅ → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅))
2423adantr 480 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅))
2517, 19, 243imtr4d 282 . . . . . . 7 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))
2625ex 449 . . . . . 6 ({𝐵} = ∅ → (Rel 𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2714, 26sylbi 206 . . . . 5 𝐵 ∈ V → (Rel 𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2813, 27syl5 33 . . . 4 𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2928adantrd 483 . . 3 𝐵 ∈ V → ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
3012, 29pm2.61i 175 . 2 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))
315, 30impbid 201 1 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173  ∅c0 3874  {csn 4125   × cxp 5036  ran crn 5039  Rel wrel 5043   Fn wfn 5799  ⟶wf 5800  –onto→wfo 5802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812 This theorem is referenced by:  nvo00  27000  esumnul  29437  esum0  29438  volsupnfl  32624  rnmptc  38348
 Copyright terms: Public domain W3C validator