MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxcph Structured version   Visualization version   GIF version

Theorem rrxcph 22988
Description: Generalized Euclidean real spaces are pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxcph (𝐼𝑉𝐻 ∈ ℂPreHil)

Proof of Theorem rrxcph
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . 3 𝐻 = (ℝ^‘𝐼)
21rrxval 22983 . 2 (𝐼𝑉𝐻 = (toℂHil‘(ℝfld freeLMod 𝐼)))
3 eqid 2610 . . 3 (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘(ℝfld freeLMod 𝐼))
4 eqid 2610 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
5 eqid 2610 . . 3 (Scalar‘(ℝfld freeLMod 𝐼)) = (Scalar‘(ℝfld freeLMod 𝐼))
6 eqid 2610 . . . 4 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
7 rebase 19771 . . . 4 ℝ = (Base‘ℝfld)
8 remulr 19776 . . . 4 · = (.r‘ℝfld)
9 eqid 2610 . . . 4 (·𝑖‘(ℝfld freeLMod 𝐼)) = (·𝑖‘(ℝfld freeLMod 𝐼))
10 eqid 2610 . . . 4 (0g‘(ℝfld freeLMod 𝐼)) = (0g‘(ℝfld freeLMod 𝐼))
11 re0g 19777 . . . 4 0 = (0g‘ℝfld)
12 refldcj 19785 . . . 4 ∗ = (*𝑟‘ℝfld)
13 refld 19784 . . . . 5 fld ∈ Field
1413a1i 11 . . . 4 (𝐼𝑉 → ℝfld ∈ Field)
15 fconstmpt 5085 . . . . 5 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
166, 7, 4frlmbasf 19923 . . . . . . . 8 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓:𝐼⟶ℝ)
17 ffn 5958 . . . . . . . 8 (𝑓:𝐼⟶ℝ → 𝑓 Fn 𝐼)
1816, 17syl 17 . . . . . . 7 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 Fn 𝐼)
19183adant3 1074 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 Fn 𝐼)
20 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝐼𝑉)
2113a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ℝfld ∈ Field)
22 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
236, 7, 8, 4, 9frlmipval 19937 . . . . . . . . . . . . . . . . 17 (((𝐼𝑉 ∧ ℝfld ∈ Field) ∧ (𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓𝑓 · 𝑓)))
2420, 21, 22, 22, 23syl22anc 1319 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = (ℝfld Σg (𝑓𝑓 · 𝑓)))
25 ovex 6577 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥) · (𝑓𝑥)) ∈ V
2625a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑥) · (𝑓𝑥)) ∈ V)
27 inidm 3784 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝐼) = 𝐼
28 eqidd 2611 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
2918, 18, 20, 20, 27, 28, 28offval 6802 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓𝑓 · 𝑓) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑓𝑥))))
3018, 18, 20, 20, 27, 28, 28ofval 6804 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑓 · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
3116ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
3231, 31remulcld 9949 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
3330, 32eqeltrd 2688 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → ((𝑓𝑓 · 𝑓)‘𝑥) ∈ ℝ)
3426, 29, 33fmpt2d 6300 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓𝑓 · 𝑓):𝐼⟶ℝ)
35 ovex 6577 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑓 · 𝑓) ∈ V
3635a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓𝑓 · 𝑓) ∈ V)
37 ffun 5961 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑓 · 𝑓):𝐼⟶ℝ → Fun (𝑓𝑓 · 𝑓))
3834, 37syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Fun (𝑓𝑓 · 𝑓))
396, 11, 4frlmbasfsupp 19921 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 finSupp 0)
40 0red 9920 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ∈ ℝ)
41 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
4241recnd 9947 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4342mul02d 10113 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
4420, 40, 16, 16, 43suppofss1d 7219 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0))
45 fsuppsssupp 8174 . . . . . . . . . . . . . . . . . . 19 ((((𝑓𝑓 · 𝑓) ∈ V ∧ Fun (𝑓𝑓 · 𝑓)) ∧ (𝑓 finSupp 0 ∧ ((𝑓𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0))) → (𝑓𝑓 · 𝑓) finSupp 0)
4636, 38, 39, 44, 45syl22anc 1319 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓𝑓 · 𝑓) finSupp 0)
47 regsumsupp 19787 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑓 · 𝑓):𝐼⟶ℝ ∧ (𝑓𝑓 · 𝑓) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑓𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑓 · 𝑓)‘𝑥))
4834, 46, 20, 47syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑓 · 𝑓)‘𝑥))
49 suppssdm 7195 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 supp 0) ⊆ dom 𝑓
50 fdm 5964 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐼⟶ℝ → dom 𝑓 = 𝐼)
5116, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → dom 𝑓 = 𝐼)
5249, 51syl5sseq 3616 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ⊆ 𝐼)
5344, 52sstrd 3578 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓𝑓 · 𝑓) supp 0) ⊆ 𝐼)
5453sselda 3568 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → 𝑥𝐼)
5554, 30syldan 486 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑓 · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
5655sumeq2dv 14281 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑓 · 𝑓)‘𝑥) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
5748, 56eqtrd 2644 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (ℝfld Σg (𝑓𝑓 · 𝑓)) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
5824, 57eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
59583adant3 1074 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
60 simp3 1056 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0)
6159, 60eqtr3d 2646 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
6239fsuppimpd 8165 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑓 supp 0) ∈ Fin)
63 ssfi 8065 . . . . . . . . . . . . . . . 16 (((𝑓 supp 0) ∈ Fin ∧ ((𝑓𝑓 · 𝑓) supp 0) ⊆ (𝑓 supp 0)) → ((𝑓𝑓 · 𝑓) supp 0) ∈ Fin)
6462, 44, 63syl2anc 691 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → ((𝑓𝑓 · 𝑓) supp 0) ∈ Fin)
6554, 32syldan 486 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) ∈ ℝ)
6631msqge0d 10475 . . . . . . . . . . . . . . . 16 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥𝐼) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
6754, 66syldan 486 . . . . . . . . . . . . . . 15 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → 0 ≤ ((𝑓𝑥) · (𝑓𝑥)))
6864, 65, 67fsum00 14371 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
69683adant3 1074 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ∀𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0))
7061, 69mpbid 221 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)) = 0)
7170r19.21bi 2916 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
7271adantlr 747 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑥) · (𝑓𝑥)) = 0)
73313adantl3 1212 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
7473recnd 9947 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℂ)
7574, 74mul0ord 10556 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
7675adantr 480 . . . . . . . . . 10 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → (((𝑓𝑥) · (𝑓𝑥)) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
7772, 76mpbid 221 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0))
78 oridm 535 . . . . . . . . 9 (((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0) ↔ (𝑓𝑥) = 0)
7977, 78sylib 207 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)) → (𝑓𝑥) = 0)
80343adant3 1074 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑓𝑓 · 𝑓):𝐼⟶ℝ)
8180adantr 480 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑓 · 𝑓):𝐼⟶ℝ)
82 ssid 3587 . . . . . . . . . . 11 ((𝑓𝑓 · 𝑓) supp 0) ⊆ ((𝑓𝑓 · 𝑓) supp 0)
8382a1i 11 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓𝑓 · 𝑓) supp 0) ⊆ ((𝑓𝑓 · 𝑓) supp 0))
84 simpl1 1057 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝐼𝑉)
85 0red 9920 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 0 ∈ ℝ)
8681, 83, 84, 85suppssr 7213 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) → ((𝑓𝑓 · 𝑓)‘𝑥) = 0)
87303adantl3 1212 . . . . . . . . . . . . 13 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → ((𝑓𝑓 · 𝑓)‘𝑥) = ((𝑓𝑥) · (𝑓𝑥)))
8887eqeq1d 2612 . . . . . . . . . . . 12 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑓 · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) · (𝑓𝑥)) = 0))
8988, 75bitrd 267 . . . . . . . . . . 11 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑓 · 𝑓)‘𝑥) = 0 ↔ ((𝑓𝑥) = 0 ∨ (𝑓𝑥) = 0)))
9089, 78syl6bb 275 . . . . . . . . . 10 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (((𝑓𝑓 · 𝑓)‘𝑥) = 0 ↔ (𝑓𝑥) = 0))
9190biimpa 500 . . . . . . . . 9 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ ((𝑓𝑓 · 𝑓)‘𝑥) = 0) → (𝑓𝑥) = 0)
9286, 91syldan 486 . . . . . . . 8 ((((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) ∧ 𝑥 ∈ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) → (𝑓𝑥) = 0)
93 undif 4001 . . . . . . . . . . . . 13 (((𝑓𝑓 · 𝑓) supp 0) ⊆ 𝐼 ↔ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) = 𝐼)
9453, 93sylib 207 . . . . . . . . . . . 12 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) = 𝐼)
9594eleq2d 2673 . . . . . . . . . . 11 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → (𝑥 ∈ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) ↔ 𝑥𝐼))
96953adant3 1074 . . . . . . . . . 10 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (𝑥 ∈ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) ↔ 𝑥𝐼))
9796biimpar 501 . . . . . . . . 9 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → 𝑥 ∈ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))))
98 elun 3715 . . . . . . . . 9 (𝑥 ∈ (((𝑓𝑓 · 𝑓) supp 0) ∪ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))) ↔ (𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))))
9997, 98sylib 207 . . . . . . . 8 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0) ∨ 𝑥 ∈ (𝐼 ∖ ((𝑓𝑓 · 𝑓) supp 0))))
10079, 92, 99mpjaodan 823 . . . . . . 7 (((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) ∧ 𝑥𝐼) → (𝑓𝑥) = 0)
101100ralrimiva 2949 . . . . . 6 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → ∀𝑥𝐼 (𝑓𝑥) = 0)
102 fconstfv 6381 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0))
103 c0ex 9913 . . . . . . . 8 0 ∈ V
104103fconst2 6375 . . . . . . 7 (𝑓:𝐼⟶{0} ↔ 𝑓 = (𝐼 × {0}))
105102, 104sylbb1 226 . . . . . 6 ((𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) = 0) → 𝑓 = (𝐼 × {0}))
10619, 101, 105syl2anc 691 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (𝐼 × {0}))
107 isfld 18579 . . . . . . . . . . 11 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
10813, 107mpbi 219 . . . . . . . . . 10 (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)
109108simpli 473 . . . . . . . . 9 fld ∈ DivRing
110 drngring 18577 . . . . . . . . 9 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
111109, 110ax-mp 5 . . . . . . . 8 fld ∈ Ring
1126, 11frlm0 19917 . . . . . . . 8 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
113111, 112mpan 702 . . . . . . 7 (𝐼𝑉 → (𝐼 × {0}) = (0g‘(ℝfld freeLMod 𝐼)))
11415, 113syl5reqr 2659 . . . . . 6 (𝐼𝑉 → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
1151143ad2ant1 1075 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → (0g‘(ℝfld freeLMod 𝐼)) = (𝑥𝐼 ↦ 0))
11615, 106, 1153eqtr4a 2670 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)) ∧ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓) = 0) → 𝑓 = (0g‘(ℝfld freeLMod 𝐼)))
117 cjre 13727 . . . . 5 (𝑥 ∈ ℝ → (∗‘𝑥) = 𝑥)
118117adantl 481 . . . 4 ((𝐼𝑉𝑥 ∈ ℝ) → (∗‘𝑥) = 𝑥)
119 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1206, 7, 8, 4, 9, 10, 11, 12, 14, 116, 118, 119frlmphl 19939 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ PreHil)
121 df-refld 19770 . . . 4 fld = (ℂflds ℝ)
1226frlmsca 19916 . . . . 5 ((ℝfld ∈ Field ∧ 𝐼𝑉) → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
12313, 122mpan 702 . . . 4 (𝐼𝑉 → ℝfld = (Scalar‘(ℝfld freeLMod 𝐼)))
124121, 123syl5reqr 2659 . . 3 (𝐼𝑉 → (Scalar‘(ℝfld freeLMod 𝐼)) = (ℂflds ℝ))
125 simpr1 1060 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 𝑓 ∈ ℝ)
126 simpr3 1062 . . . 4 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → 0 ≤ 𝑓)
127125, 126resqrtcld 14004 . . 3 ((𝐼𝑉 ∧ (𝑓 ∈ ℝ ∧ 𝑓 ∈ ℝ ∧ 0 ≤ 𝑓)) → (√‘𝑓) ∈ ℝ)
12864, 65, 67fsumge0 14368 . . . . 5 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ Σ𝑥 ∈ ((𝑓𝑓 · 𝑓) supp 0)((𝑓𝑥) · (𝑓𝑥)))
129128, 57breqtrrd 4611 . . . 4 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (ℝfld Σg (𝑓𝑓 · 𝑓)))
130129, 24breqtrrd 4611 . . 3 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 0 ≤ (𝑓(·𝑖‘(ℝfld freeLMod 𝐼))𝑓))
1313, 4, 5, 120, 124, 9, 127, 130tchcph 22844 . 2 (𝐼𝑉 → (toℂHil‘(ℝfld freeLMod 𝐼)) ∈ ℂPreHil)
1322, 131eqeltrd 2688 1 (𝐼𝑉𝐻 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cun 3538  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793   supp csupp 7182  Fincfn 7841   finSupp cfsupp 8158  cr 9814  0cc0 9815   · cmul 9820  cle 9954  ccj 13684  Σcsu 14264  Basecbs 15695  s cress 15696  Scalarcsca 15771  ·𝑖cip 15773  0gc0g 15923   Σg cgsu 15924  Ringcrg 18370  CRingccrg 18371  DivRingcdr 18570  Fieldcfield 18571  fldccnfld 19567  fldcrefld 19769   freeLMod cfrlm 19909  ℂPreHilccph 22774  toℂHilctch 22775  ℝ^crrx 22979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-abv 18640  df-staf 18668  df-srng 18669  df-lmod 18688  df-lss 18754  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-refld 19770  df-phl 19790  df-dsmm 19895  df-frlm 19910  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-tng 22199  df-nrg 22200  df-nlm 22201  df-clm 22671  df-cph 22776  df-tch 22777  df-rrx 22981
This theorem is referenced by:  rrxngp  39178
  Copyright terms: Public domain W3C validator