Step | Hyp | Ref
| Expression |
1 | | lindsrng01.r |
. . . . . . . . 9
⊢ 𝑅 = (Scalar‘𝑀) |
2 | | lindsrng01.e |
. . . . . . . . 9
⊢ 𝐸 = (Base‘𝑅) |
3 | 1, 2 | lmodsn0 18699 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod → 𝐸 ≠ ∅) |
4 | | fvex 6113 |
. . . . . . . . . . 11
⊢
(Base‘𝑅)
∈ V |
5 | 2, 4 | eqeltri 2684 |
. . . . . . . . . 10
⊢ 𝐸 ∈ V |
6 | | hasheq0 13015 |
. . . . . . . . . 10
⊢ (𝐸 ∈ V → ((#‘𝐸) = 0 ↔ 𝐸 = ∅)) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . . 9
⊢
((#‘𝐸) = 0
↔ 𝐸 =
∅) |
8 | | eqneqall 2793 |
. . . . . . . . . 10
⊢ (𝐸 = ∅ → (𝐸 ≠ ∅ → 𝑆 linIndS 𝑀)) |
9 | 8 | com12 32 |
. . . . . . . . 9
⊢ (𝐸 ≠ ∅ → (𝐸 = ∅ → 𝑆 linIndS 𝑀)) |
10 | 7, 9 | syl5bi 231 |
. . . . . . . 8
⊢ (𝐸 ≠ ∅ →
((#‘𝐸) = 0 →
𝑆 linIndS 𝑀)) |
11 | 3, 10 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ LMod →
((#‘𝐸) = 0 →
𝑆 linIndS 𝑀)) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → ((#‘𝐸) = 0 → 𝑆 linIndS 𝑀)) |
13 | 12 | com12 32 |
. . . . 5
⊢
((#‘𝐸) = 0
→ ((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵) → 𝑆 linIndS 𝑀)) |
14 | 1 | lmodring 18694 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ Ring) |
16 | | eqid 2610 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
17 | 2, 16 | 0ring 19091 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(#‘𝐸) = 1) →
𝐸 =
{(0g‘𝑅)}) |
18 | 15, 17 | sylan 487 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → 𝐸 = {(0g‘𝑅)}) |
19 | | simpr 476 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → 𝑆 ∈ 𝒫 𝐵) |
21 | 20 | adantl 481 |
. . . . . . . 8
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → 𝑆 ∈ 𝒫 𝐵) |
22 | | snex 4835 |
. . . . . . . . . . . . . 14
⊢
{(0g‘𝑅)} ∈ V |
23 | 20, 22 | jctil 558 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) →
({(0g‘𝑅)}
∈ V ∧ 𝑆 ∈
𝒫 𝐵)) |
24 | 23 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → ({(0g‘𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵)) |
25 | | elmapg 7757 |
. . . . . . . . . . . 12
⊢
(({(0g‘𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑓 ∈ ({(0g‘𝑅)} ↑𝑚
𝑆) ↔ 𝑓:𝑆⟶{(0g‘𝑅)})) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑓 ∈ ({(0g‘𝑅)} ↑𝑚
𝑆) ↔ 𝑓:𝑆⟶{(0g‘𝑅)})) |
27 | | fvex 6113 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑅) ∈ V |
28 | 27 | fconst2 6375 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑆⟶{(0g‘𝑅)} ↔ 𝑓 = (𝑆 × {(0g‘𝑅)})) |
29 | | fconstmpt 5085 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ×
{(0g‘𝑅)})
= (𝑥 ∈ 𝑆 ↦
(0g‘𝑅)) |
30 | 29 | eqeq2i 2622 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑆 × {(0g‘𝑅)}) ↔ 𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅))) |
31 | 28, 30 | bitri 263 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑆⟶{(0g‘𝑅)} ↔ 𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅))) |
32 | | eqidd 2611 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣 ∈ 𝑆) → (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅))) |
33 | | eqidd 2611 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣 ∈ 𝑆) ∧ 𝑥 = 𝑣) → (0g‘𝑅) = (0g‘𝑅)) |
34 | | simpr 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ 𝑆) |
35 | 27 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣 ∈ 𝑆) → (0g‘𝑅) ∈ V) |
36 | 32, 33, 34, 35 | fvmptd 6197 |
. . . . . . . . . . . . . . 15
⊢ (((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))‘𝑣) = (0g‘𝑅)) |
37 | 36 | ralrimiva 2949 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → ∀𝑣 ∈ 𝑆 ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))‘𝑣) = (0g‘𝑅)) |
38 | 37 | a1d 25 |
. . . . . . . . . . . . 13
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (((𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) finSupp
(0g‘𝑅)
∧ ((𝑥 ∈ 𝑆 ↦
(0g‘𝑅))(
linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))‘𝑣) = (0g‘𝑅))) |
39 | | breq1 4586 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → (𝑓 finSupp (0g‘𝑅) ↔ (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) finSupp
(0g‘𝑅))) |
40 | | oveq1 6556 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → (𝑓( linC ‘𝑀)𝑆) = ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))( linC ‘𝑀)𝑆)) |
41 | 40 | eqeq1d 2612 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → ((𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ↔ ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))( linC ‘𝑀)𝑆) = (0g‘𝑀))) |
42 | 39, 41 | anbi12d 743 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → ((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) ↔ ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) finSupp
(0g‘𝑅)
∧ ((𝑥 ∈ 𝑆 ↦
(0g‘𝑅))(
linC ‘𝑀)𝑆) = (0g‘𝑀)))) |
43 | | fveq1 6102 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → (𝑓‘𝑣) = ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))‘𝑣)) |
44 | 43 | eqeq1d 2612 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → ((𝑓‘𝑣) = (0g‘𝑅) ↔ ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))‘𝑣) = (0g‘𝑅))) |
45 | 44 | ralbidv 2969 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → (∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅) ↔ ∀𝑣 ∈ 𝑆 ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))‘𝑣) = (0g‘𝑅))) |
46 | 42, 45 | imbi12d 333 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → (((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅)) ↔ (((𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) finSupp
(0g‘𝑅)
∧ ((𝑥 ∈ 𝑆 ↦
(0g‘𝑅))(
linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 ((𝑥 ∈ 𝑆 ↦ (0g‘𝑅))‘𝑣) = (0g‘𝑅)))) |
47 | 38, 46 | syl5ibrcom 236 |
. . . . . . . . . . . 12
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑓 = (𝑥 ∈ 𝑆 ↦ (0g‘𝑅)) → ((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅)))) |
48 | 31, 47 | syl5bi 231 |
. . . . . . . . . . 11
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑓:𝑆⟶{(0g‘𝑅)} → ((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅)))) |
49 | 26, 48 | sylbid 229 |
. . . . . . . . . 10
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑓 ∈ ({(0g‘𝑅)} ↑𝑚
𝑆) → ((𝑓 finSupp
(0g‘𝑅)
∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅)))) |
50 | 49 | ralrimiv 2948 |
. . . . . . . . 9
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → ∀𝑓 ∈ ({(0g‘𝑅)} ↑𝑚
𝑆)((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅))) |
51 | | oveq1 6556 |
. . . . . . . . . . 11
⊢ (𝐸 = {(0g‘𝑅)} → (𝐸 ↑𝑚 𝑆) = ({(0g‘𝑅)} ↑𝑚
𝑆)) |
52 | 51 | raleqdv 3121 |
. . . . . . . . . 10
⊢ (𝐸 = {(0g‘𝑅)} → (∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅)) ↔ ∀𝑓 ∈ ({(0g‘𝑅)} ↑𝑚
𝑆)((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅)))) |
53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅)) ↔ ∀𝑓 ∈ ({(0g‘𝑅)} ↑𝑚
𝑆)((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅)))) |
54 | 50, 53 | mpbird 246 |
. . . . . . . 8
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅))) |
55 | | simpl 472 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵)) |
56 | 55 | ancomd 466 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod)) |
57 | 56 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod)) |
58 | | lindsrng01.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
59 | | eqid 2610 |
. . . . . . . . . 10
⊢
(0g‘𝑀) = (0g‘𝑀) |
60 | 58, 59, 1, 2, 16 | islininds 42029 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅))))) |
61 | 57, 60 | syl 17 |
. . . . . . . 8
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp (0g‘𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑆 (𝑓‘𝑣) = (0g‘𝑅))))) |
62 | 21, 54, 61 | mpbir2and 959 |
. . . . . . 7
⊢ ((𝐸 = {(0g‘𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → 𝑆 linIndS 𝑀) |
63 | 18, 62 | mpancom 700 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → 𝑆 linIndS 𝑀) |
64 | 63 | expcom 450 |
. . . . 5
⊢
((#‘𝐸) = 1
→ ((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵) → 𝑆 linIndS 𝑀)) |
65 | 13, 64 | jaoi 393 |
. . . 4
⊢
(((#‘𝐸) = 0
∨ (#‘𝐸) = 1)
→ ((𝑀 ∈ LMod
∧ 𝑆 ∈ 𝒫
𝐵) → 𝑆 linIndS 𝑀)) |
66 | 65 | expd 451 |
. . 3
⊢
(((#‘𝐸) = 0
∨ (#‘𝐸) = 1)
→ (𝑀 ∈ LMod
→ (𝑆 ∈ 𝒫
𝐵 → 𝑆 linIndS 𝑀))) |
67 | 66 | com12 32 |
. 2
⊢ (𝑀 ∈ LMod →
(((#‘𝐸) = 0 ∨
(#‘𝐸) = 1) →
(𝑆 ∈ 𝒫 𝐵 → 𝑆 linIndS 𝑀))) |
68 | 67 | 3imp 1249 |
1
⊢ ((𝑀 ∈ LMod ∧
((#‘𝐸) = 0 ∨
(#‘𝐸) = 1) ∧
𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀) |