MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstfv Structured version   Unicode version

Theorem fconstfv 6124
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 6118. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
fconstfv  |-  ( F : A --> { B } 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fconstfv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5731 . . 3  |-  ( F : A --> { B }  ->  F  Fn  A
)
2 fvconst 6080 . . . 4  |-  ( ( F : A --> { B }  /\  x  e.  A
)  ->  ( F `  x )  =  B )
32ralrimiva 2878 . . 3  |-  ( F : A --> { B }  ->  A. x  e.  A  ( F `  x )  =  B )
41, 3jca 532 . 2  |-  ( F : A --> { B }  ->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) )
5 fneq2 5670 . . . . . . 7  |-  ( A  =  (/)  ->  ( F  Fn  A  <->  F  Fn  (/) ) )
6 fn0 5700 . . . . . . 7  |-  ( F  Fn  (/)  <->  F  =  (/) )
75, 6syl6bb 261 . . . . . 6  |-  ( A  =  (/)  ->  ( F  Fn  A  <->  F  =  (/) ) )
8 f0 5766 . . . . . . 7  |-  (/) : (/) --> { B }
9 feq1 5713 . . . . . . 7  |-  ( F  =  (/)  ->  ( F : (/) --> { B }  <->  (/) :
(/) --> { B }
) )
108, 9mpbiri 233 . . . . . 6  |-  ( F  =  (/)  ->  F : (/) --> { B } )
117, 10syl6bi 228 . . . . 5  |-  ( A  =  (/)  ->  ( F  Fn  A  ->  F : (/) --> { B }
) )
12 feq2 5714 . . . . 5  |-  ( A  =  (/)  ->  ( F : A --> { B } 
<->  F : (/) --> { B } ) )
1311, 12sylibrd 234 . . . 4  |-  ( A  =  (/)  ->  ( F  Fn  A  ->  F : A --> { B }
) )
1413adantrd 468 . . 3  |-  ( A  =  (/)  ->  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  F : A --> { B } ) )
15 fvelrnb 5915 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
y  e.  ran  F  <->  E. z  e.  A  ( F `  z )  =  y ) )
16 fveq2 5866 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1716eqeq1d 2469 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( F `  x
)  =  B  <->  ( F `  z )  =  B ) )
1817rspccva 3213 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  A  ( F `  x )  =  B  /\  z  e.  A )  ->  ( F `  z )  =  B )
1918eqeq1d 2469 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  ( F `  x )  =  B  /\  z  e.  A )  ->  (
( F `  z
)  =  y  <->  B  =  y ) )
2019rexbidva 2970 . . . . . . . . . . 11  |-  ( A. x  e.  A  ( F `  x )  =  B  ->  ( E. z  e.  A  ( F `  z )  =  y  <->  E. z  e.  A  B  =  y ) )
21 r19.9rzv 3922 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  ->  ( B  =  y  <->  E. z  e.  A  B  =  y )
)
2221bicomd 201 . . . . . . . . . . 11  |-  ( A  =/=  (/)  ->  ( E. z  e.  A  B  =  y  <->  B  =  y
) )
2320, 22sylan9bbr 700 . . . . . . . . . 10  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  ( F `  x )  =  B )  ->  ( E. z  e.  A  ( F `  z )  =  y  <->  B  =  y ) )
2415, 23sylan9bbr 700 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  (
y  e.  ran  F  <->  B  =  y ) )
25 elsn 4041 . . . . . . . . . 10  |-  ( y  e.  { B }  <->  y  =  B )
26 eqcom 2476 . . . . . . . . . 10  |-  ( y  =  B  <->  B  =  y )
2725, 26bitr2i 250 . . . . . . . . 9  |-  ( B  =  y  <->  y  e.  { B } )
2824, 27syl6bb 261 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  (
y  e.  ran  F  <->  y  e.  { B }
) )
2928eqrdv 2464 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  ran  F  =  { B }
)
3029an32s 802 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  F  Fn  A )  /\  A. x  e.  A  ( F `  x )  =  B )  ->  ran  F  =  { B }
)
3130exp31 604 . . . . 5  |-  ( A  =/=  (/)  ->  ( F  Fn  A  ->  ( A. x  e.  A  ( F `  x )  =  B  ->  ran  F  =  { B } ) ) )
3231imdistand 692 . . . 4  |-  ( A  =/=  (/)  ->  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B )  -> 
( F  Fn  A  /\  ran  F  =  { B } ) ) )
33 df-fo 5594 . . . . 5  |-  ( F : A -onto-> { B } 
<->  ( F  Fn  A  /\  ran  F  =  { B } ) )
34 fof 5795 . . . . 5  |-  ( F : A -onto-> { B }  ->  F : A --> { B } )
3533, 34sylbir 213 . . . 4  |-  ( ( F  Fn  A  /\  ran  F  =  { B } )  ->  F : A --> { B }
)
3632, 35syl6 33 . . 3  |-  ( A  =/=  (/)  ->  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  F : A --> { B } ) )
3714, 36pm2.61ine 2780 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  F : A --> { B } )
384, 37impbii 188 1  |-  ( F : A --> { B } 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   (/)c0 3785   {csn 4027   ran crn 5000    Fn wfn 5583   -->wf 5584   -onto->wfo 5586   ` cfv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fo 5594  df-fv 5596
This theorem is referenced by:  fconst3  6125  repsdf2  12716  rrxcph  21651  lnon0  25486  df0op2  26444  lfl1  34084
  Copyright terms: Public domain W3C validator